Browsing by Subject "MORPHOLOGICAL COMPLEXITY"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Complexity by Subtraction(Evolutionary Biology, 2013) McShea, DW; Hordijk, WThe eye and brain: standard thinking is that these devices are both complex and functional. They are complex in the sense of having many different types of parts, and functional in the sense of having capacities that promote survival and reproduction. Standard thinking says that the evolution of complex functionality proceeds by the addition of new parts, and that this build-up of complexity is driven by selection, by the functional advantages of complex design. The standard thinking could be right, even in general. But alternatives have not been much discussed or investigated, and the possibility remains open that other routes may not only exist but may be the norm. Our purpose here is to introduce a new route to functional complexity, a route in which complexity starts high, rising perhaps on account of the spontaneous tendency for parts to differentiate. Then, driven by selection for effective and efficient function, complexity decreases over time. Eventually, the result is a system that is highly functional and retains considerable residual complexity, enough to impress us. We try to raise this alternative route to the level of plausibility as a general mechanism in evolution by describing two cases, one from a computational model and one from the history of life. © 2013 Springer Science+Business Media New York.Item Open Access Three Trends in the History of Life: An Evolutionary Syndrome(Evolutionary Biology, 2016-12-01) McShea, DWThe history of life seems to be characterized by three large-scale trends in complexity: (1) the rise in complexity in the sense of hierarchy, in other words, an increase in the number of levels of organization within organisms; (2) the increase in complexity in the sense of differentiation, that is, a rise in the number of different part types at the level just below the whole; and (3) a downward trend, the loss of differentiation at the lowest levels in organisms, a kind of complexity drain within the parts. Here, I describe the three trends, outlining the evidence for each and arguing that they are connected with each other, that together they constitute an evolutionary syndrome, one that has recurred a number times over the history of life. Finally, in the last section, I offer an argument connecting the third trend to the reduction at lower levels of organization in “autonomy”, or from a different perspective, to an increase in what might be called the “machinification” of the lower levels.