Browsing by Subject "MORPHOLOGY"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
Item Open Access A worldwide phylogeny of Adiantum (Pteridaceae) reveals remarkable convergent evolution in leaf blade architecture(Taxon, 2018-06-01) Huiet, L; Li, F; Kao, T; Prado, J; Smith, AR; Schuettpelz, E; Pryeri, KM© International Association for Plant Taxonomy (IAPT) 2018, All rights reserved. Adiantum is among the most distinctive and easily recognized leptosporangiate fern genera. Despite encompassing an astonishing range of leaf complexity, all species of Adiantum share a unique character state not observed in other ferns: sporangia borne directly on the reflexed leaf margin or “false indusium” (pseudoindusium). The over 200 species of Adiantum span six continents and are nearly all terrestrial. Here, we present one of the most comprehensive phylogenies for any large (200+ spp.) monophyletic, subcosmopolitan genus of ferns to date. We build upon previous datasets, providing new data from four plastid markers (rbcL, atpA, rpoA, chlN) for 146 taxa. All sampled taxa can be unequivocally assigned to one of nine robustly supported clades. Although some of these unite to form larger, well-supported lineages, the backbone of our phylogeny has several short branches and generally weak support, making it difficult to accurately assess deep relationships. Our maximum likelihood-based ancestral character state reconstructions of leaf blade architecture reveal remarkable convergent evolution across multiple clades for nearly all leaf forms. A single unique synapomorphy—leaves once-pinnate, usually with prolonged rooting tips—defines the philippense clade. Although a rare occurrence in Adiantum, simple leaves occur in three distinct clades (davidii, philippense, peruvianum). Most taxa have leaves that are more than once-pinnate, and only a few of these (in the formosum and pedatum clades) exhibit the distinct pseudopedate form. Distributional ranges for each of the terminal taxa show that most species (75%) are restricted to only one of six major biogeographical regions. Forty-eight of our sampled species (nearly one-third) are endemic to South America.Item Open Access Are there too many fern genera?(Taxon, 2018-06-01) Schuettpelz, E; Rouhan, G; Pryer, KM; Rothfels, CJ; Prado, J; Sundue, MA; Windham, MD; Moran, RC; Smith, ARItem Open Access Assessing phylogenetic relationships in extant heterosporous ferns (Salviniales), with a focus on Pilularia and Salvinia(Botanical Journal of the Linnean Society, 2008-08-01) Nagalingum, NS; Nowak, MD; Pryer, KMHeterosporous ferns (Salviniales) are a group of approximately 70 species that produce two types of spores (megaspores and microspores). Earlier broad-scale phylogenetic studies on the order typically focused on one or, at most, two species per genus. In contrast, our study samples numerous species for each genus, wherever possible, accounting for almost half of the species diversity of the order. Our analyses resolve Marsileaceae, Salviniaceae and all of the component genera as monophyletic. Salviniaceae incorporate Salvinia and Azolla; in Marsileaceae, Marsilea is sister to the clade of Regnellidium and Pilularia - this latter clade is consistently resolved, but not always strongly supported. Our individual species-level investigations for Pilularia and Salvinia, together with previously published studies on Marsilea and Azolla (Regnellidium is monotypic), provide phylogenies within all genera of heterosporous ferns. The Pilularia phylogeny reveals two groups: Group I includes the European taxa P. globulifera and P. minuta; Group II consists of P. americana, P. novae-hollandiae and P. novae-zelandiae from North America, Australia and New Zealand, respectively, and are morphologically difficult to distinguish. Based on their identical molecular sequences and morphology, we regard P. novae-hollandiae and P. novae-zelandiae to be conspecific; the name P. novae-hollandiae has nomenclatural priority. The status of P. americana requires further investigation as it consists of two geographically and genetically distinct North American groups and also shows a high degree of sequence similarity to P. novae-hollandiae. Salvinia also comprises biogeographically distinct units - a Eurasian group (S. natans and S. cucullata) and an American clade that includes the noxious weed S. molesta, as well as S. oblongifolia and S. minima. © 2008 The Linnean Society of London.Item Open Access On the phylogenetic position of Cystodium: It's not a tree fern - It's a polypod!(American Fern Journal, 2006-04-01) Korall, P; Conant, DS; Schneider, H; Ueda, K; Nishida, H; Pryer, KMThe phylogenetic position of Cystodium J. Sm. is studied here for the first time using DNA sequence data. Based on a broad sampling of leptosporangiate ferns and two plastid genes (rbcL and atpB), we show that Cystodium does not belong to the tree fern family Dicksoniaceae, as previously thought. Our results strongly support including Cystodium within the large polypod clade, and suggest its close relationship to the species-poor grade taxa at the base of the polypod topology (Sphenomeris and Lonchitis, or Saccoloma in this study). Further studies, with an expanded taxon sampling within polypods, are needed to fully understand the more precise phylogenetic relationships of Cystodium.Item Open Access Phylogenetic relationships of the enigmatic fern families Hymenophyllopsidaceae and Lophosoriaceae: Evidence from rbcL nucleotide sequences(Plant Systematics and Evolution, 1999-01-01) Wolf, PG; Sipes, SD; White, MR; Martines, ML; Pryer, KM; Smith, AR; Ueda, KNucleotide sequences from rbcL were used to infer relationships of Lophosoriaceae and Hymenophyllopsidaceae. The phylogenetic positions of these two monotypic fern families have been debated, and neither group had been included in recent molecular systematic studies of ferns. Maximum parsimony analysis of our data supported a sister relationship between Lophosoria and Dicksonia, and also between Hymenophyllopsis and Cyathea. Thus, both newly-examined families appear to be part of a previously characterized and well-supported clade of tree ferns. The inferred relationships of Lophosoria are consistent with most (but not all) recent treatments. However, Hymenophyllopsis includes only small delicate plants superficially similar to filmy ferns (Hymenophyllaceae), very different from the large arborescent taxa. Nevertheless, some synapomorphic characteristics are shared with the tree fern clade. Further studies on gametophytes of Hymenophyllopsis are needed to test these hypotheses of relationship.Item Open Access rbcL data reveal two monophyletic groups of filmy ferns (Filicopsida: Hymenophyllaceae).(American journal of botany, 2001-06) Pryer, KM; Smith, AR; Hunt, JS; Dubuisson, JYThe "filmy fern" family, Hymenophyllaceae, is traditionally partitioned into two principal genera, Trichomanes s.l. (sensu lato) and Hymenophyllum s.l., based upon sorus shape characters. This basic split in the family has been widely debated this past century and hence was evaluated here by using rbcL nucleotide sequence data in a phylogenetic study of 26 filmy ferns and nine outgroup taxa. Our results confirm the monophyly of the family and provide robust support for two monophyletic groups that correspond to the two classical genera. In addition, we show that some taxa of uncertain affinity, such as the monotypic genera Cardiomanes and Serpyllopsis, and at least one species of Microtrichomanes, are convincingly included within Hymenophyllum s.l. The tubular- or conical-based sorus that typifies Trichomanes s.l. and Cardiomanes, the most basal member of Hymenophyllum s.l., is a plesiomorphic character state for the family. Tubular-based sori occurring in other members of Hymenophyllum s.l. are most likely derived independently and more than one time. While rbcL data are able to provide a well-supported phylogenetic estimate within Trichomanes s.l., they are inadequate for resolving relationships within Hymenophyllum s.l., which will require data from additional sources. This disparity in resolution reflects differential rates of evolution for rbcL within Hymenophyllaceae.Item Open Access rbcL phylogeny of the fern genus Trichomanes (Hymenophyllaceae), with special reference to Neotropical taxa(International Journal of Plant Sciences, 2003-01-01) Dubuisson, JY; Hennequin, S; Douzery, EJP; Cranfill, RB; Smith, AR; Pryer, KMIn order to estimate evolutionary relationships within the filmy fern genus Trichomanes (Hymenophyllaceae), we performed a phylogenetic analysis using rbcL nucleotide data from 46 species of Trichomanes belonging to all four of C. V. Morton's subgenera: Achomanes, Didymoglossum, Pachychaetum, and Trichomanes. Outgroups included four species of Hymenophyllum in three different subgenera, plus the monotypic genus Cardiomanes, from New Zealand. We find high resolution and robust support at most nodes, regardless of the phylogenetic optimization criterion used (maximum parsimony or maximum likelihood). Two species belonging to Morton's Asiatic sections Callistopteris and Cephalomanes are in unresolved basal positions within Trichomanes s.l., suggesting that rbcL data alone are inadequate for estimating the earliest cladogenetic events. Out of the four Morton trichomanoid subgenera, only subg. Didymoglossum appears monophyletic. Other noteworthy results include the following: (1) lianescent sect. Lacostea is more closely related to sect. Davalliopsis (traditionally placed in subg. Pachychaetum) than to other members of subg. Achomanes; (2) sections Davalliopsis and Lacostea, together with species of the morphologically different subg. Achomanes, make up a strongly supported Neotropical clade; (3) all hemiepiphytes (but not true lianas) and strictly epiphytic or epipetric species (Morton's subgenera Trichomanes and Didymoglossum) group together in an ecologically definable clade that also includes the terrestrial sect. Nesopteris; and (4) sect. Lacosteopsis (sensu Morton) is polyphyletic and comprises two distantly related clades: large hemiepiphytic climbers and small strictly epiphytic/epipetric taxa. Each of these associations is somewhat unexpected but is supported by cytological, geographical, and/or ecological evidence. We conclude that many morphological characters traditionally used for delimiting groups within Trichomanes are, in part, plesiomorphic or homoplastic. Additionally, we discuss probable multiple origins of Neotropical Trichomanes.Item Open Access Structure and function of spores in the aquatic heterosporous fern family Marsileaceae(International Journal of Plant Sciences, 2002-01-01) Schneider, H; Pryer, KMSpores of the aquatic heterosporous fern family Marsileaceae differ markedly from spores of Salviniaceae, the only other family of heterosporous ferns and sister group to Marsileaceae, and from spores of all homosporous ferns. The marsileaceous outer spore wall (perine) is modified above the aperture into a structure, the acrolamella, and the perine and acrolamella are further modified into a remarkable gelatinous layer that envelops the spore. Observations with light and scanning electron microscopy indicate that the three living marsileaceous fern genera (Marsilea, Pilularia, and Regnellidium) each have distinctive spores, particularly with regard to the perine and acrolamella. Several spore characters support a division of Marsilea into two groups. Spore character evolution is discussed in the context of developmental and possible functional aspects. The gelatinous perine layer acts as a flexible, floating organ that envelops the spores only for a short time and appears to be an adaptation of marsileaceous ferns to amphibious habitats. The gelatinous nature of the perine layer is likely the result of acidic polysaccharide components in the spore wall that have hydrogel (swelling and shrinking) properties. Megaspores floating at the water/air interface form a concave meniscus, at the center of which is the gelatinous acrolamella that encloses a "sperm lake". This meniscus creates a vortex-like effect that serves as a trap for free-swimming sperm cells, propelling them into the sperm lake.