Browsing by Subject "Melanins"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Contrast mechanisms in pump-probe microscopy of melanin.(Optics express, 2022-08) Grass, David; Beasley, Georgia M; Fischer, Martin C; Selim, M Angelica; Zhou, Yue; Warren, Warren SPump-probe microscopy of melanin in tumors has been proposed to improve diagnosis of malignant melanoma, based on the hypothesis that aggressive cancers disaggregate melanin structure. However, measured signals of melanin are complex superpositions of multiple nonlinear processes, which makes interpretation challenging. Polarization control during measurement and data fitting are used to decompose signals of melanin into their underlying molecular mechanisms. We then identify the molecular mechanisms that are most susceptible to melanin disaggregation and derive false-coloring schemes to highlight these processes in biological tissue. We demonstrate that false-colored images of a small set of melanoma tumors correlate with clinical concern. More generally, our systematic approach of decomposing pump-probe signals can be applied to a multitude of different samples.Item Open Access Gene loss, adaptive evolution and the co-evolution of plumage coloration genes with opsins in birds.(BMC Genomics, 2015-10-06) Borges, Rui; Borges, Rui; Khan, Imran; Johnson, Warren E; Gilbert, M Thomas P; Zhang, Guojie; Jarvis, Erich D; O'Brien, Stephen J; Antunes, AgostinhoBACKGROUND: The wide range of complex photic systems observed in birds exemplifies one of their key evolutionary adaptions, a well-developed visual system. However, genomic approaches have yet to be used to disentangle the evolutionary mechanisms that govern evolution of avian visual systems. RESULTS: We performed comparative genomic analyses across 48 avian genomes that span extant bird phylogenetic diversity to assess evolutionary changes in the 17 representatives of the opsin gene family and five plumage coloration genes. Our analyses suggest modern birds have maintained a repertoire of up to 15 opsins. Synteny analyses indicate that PARA and PARIE pineal opsins were lost, probably in conjunction with the degeneration of the parietal organ. Eleven of the 15 avian opsins evolved in a non-neutral pattern, confirming the adaptive importance of vision in birds. Visual conopsins sw1, sw2 and lw evolved under negative selection, while the dim-light RH1 photopigment diversified. The evolutionary patterns of sw1 and of violet/ultraviolet sensitivity in birds suggest that avian ancestors had violet-sensitive vision. Additionally, we demonstrate an adaptive association between the RH2 opsin and the MC1R plumage color gene, suggesting that plumage coloration has been photic mediated. At the intra-avian level we observed some unique adaptive patterns. For example, barn owl showed early signs of pseudogenization in RH2, perhaps in response to nocturnal behavior, and penguins had amino acid deletions in RH2 sites responsible for the red shift and retinal binding. These patterns in the barn owl and penguins were convergent with adaptive strategies in nocturnal and aquatic mammals, respectively. CONCLUSIONS: We conclude that birds have evolved diverse opsin adaptations through gene loss, adaptive selection and coevolution with plumage coloration, and that differentiated selective patterns at the species level suggest novel photic pressures to influence evolutionary patterns of more-recent lineages.Item Open Access Probing near-infrared photorelaxation pathways in eumelanins and pheomelanins.(J Phys Chem A, 2010-11-04) Piletic, Ivan R; Matthews, Thomas E; Warren, Warren SUltraviolet-visible spectroscopy readily discerns the two types of melanin pigments (eumelanin and pheomelanin), although fundamental details regarding the optical properties and pigment heterogeneity are more difficult to disentangle via analysis of the broad featureless absorption spectrum alone. We employed nonlinear transient absorption spectroscopy to study different melanin pigments at near-infrared wavelengths. Excited-state absorption, ground-state depletion, and stimulated emission signal contributions were distinguished for natural and synthetic eumelanins and pheomelanins. A starker contrast among the pigments is observed in the nonlinear excitation regime because they all exhibit distinct transient absorptive amplitudes, phase shifts, and nonexponential population dynamics spanning the femtosecond-nanosecond range. In this manner, different pigments within the pheomelanin subclass were distinguished in synthetic and human hair samples. These results highlight the potential of nonlinear spectroscopies to deliver an in situ analysis of natural melanins in tissue that are otherwise difficult to extract and purify.Item Open Access Variation in chromosome copy number influences the virulence of Cryptococcus neoformans and occurs in isolates from AIDS patients.(BMC Genomics, 2011-10-27) Hu, Guanggan; Wang, Joyce; Choi, Jaehyuk; Jung, Won Hee; Liu, Iris; Litvintseva, Anastasia P; Bicanic, Tihana; Aurora, Rajeev; Mitchell, Thomas G; Perfect, John R; Kronstad, James WBACKGROUND: The adaptation of pathogenic fungi to the host environment via large-scale genomic changes is a poorly characterized phenomenon. Cryptococcus neoformans is the leading cause of fungal meningoencephalitis in HIV/AIDS patients, and we recently discovered clinical strains of the fungus that are disomic for chromosome 13. Here, we examined the genome plasticity and phenotypes of monosomic and disomic strains, and compared their virulence in a mouse model of cryptococcosis RESULTS: In an initial set of strains, melanin production was correlated with monosomy at chromosome 13, and disomic variants were less melanized and attenuated for virulence in mice. After growth in culture or passage through mice, subsequent strains were identified that varied in melanin formation and exhibited copy number changes for other chromosomes. The correlation between melanin and disomy at chromosome 13 was observed for some but not all strains. A survey of environmental and clinical isolates maintained in culture revealed few occurrences of disomic chromosomes. However, an examination of isolates that were freshly collected from the cerebrospinal fluid of AIDS patients and minimally cultured provided evidence for infections with multiple strains and copy number variation. CONCLUSIONS: Overall, these results suggest that the genome of C. neoformans exhibits a greater degree of plasticity than previously appreciated. Furthermore, the expression of an essential virulence factor and the severity of disease are associated with genome variation. The occurrence of chromosomal variation in isolates from AIDS patients, combined with the observed influence of disomy on virulence, indicates that genome plasticity may have clinical relevance.