Browsing by Subject "Membranes, Artificial"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Open Access Evaluation of a field appropriate membrane filtration method for the detection of Vibrio cholerae for the measurement of biosand filter performance in the Artibonite Valley, Haiti.(Environ Monit Assess, 2015-08) Thomson, Ashley A; Gunsch, Claudia KBiosand filters in the Artibonite Valley of Haiti, the epicenter of the cholera epidemic that began in October 2010, were tested for total coliform and Vibrio cholerae removal efficiencies. While coliform are often used as an indicator organism for pathogenic bacteria, a correlation has never been established linking the concentration of coliform and V. cholerae, the causative agent for cholera. Hence, a method for field enumeration of V. cholerae was developed and tested. To this end, a plate count test utilizing membrane filtration technique was developed to measure viable V. cholerae cell concentration in the field. Method accuracy was confirmed by comparing plate count concentrations to microscopic counts. Additionally, biosand filters were sampled and removal efficiencies of V. cholerae and coliform bacteria compared. The correlation between removal efficiency and time in operation, biofilm ("schmutzdecke") composition, and idle time was also investigated. The plate count method for V. cholerae was found to accurately reflect microscope counts and was shown to be effective in the field. Overall, coliform concentration was not an appropriate indicator of V. cholerae concentration. In 90% of the influent samples from the study, coliform underestimated V. cholerae concentration (n = 26). Furthermore, coliform removal efficiency was higher than for V. cholerae hence providing a conservative measurement. Finally, time in operation and idle time were found to be important parameters controlling performance. Overall, this method shows promise for field applications and should be expanded to additional studies to confirm its efficacy to test for V. cholerae in various source waters.Item Open Access Functional elastic hydrogel as recyclable membrane for the adsorption and degradation of methylene blue.(PloS one, 2014-01) Bao, Song; Wu, Dongbei; Wang, Qigang; Su, TengDeveloping the application of high-strength hydrogels has gained much attention in the fields of medical, pharmacy, and pollutant removal due to their versatility and stimulus-responsive properties. In this presentation, a high-strength freestanding elastic hydrogel membrane was constructed by clay nanosheets, N, N-dimethylacrylamide and 2-acrylamide-2-methylpropanesulfonic acid for adsorption of methylene blue and heavy metal ions. The maximum values of elongation and Young's modulus for 0.5% AMPSNa hydrogel were 1901% and 949.4 kPa, respectively, much higher than those of traditional hydrogels. The adsorptions were confirmed to follow pseudo-second kinetic equation and Langmuir isotherm model fits the data well. The maximum adsorption capacity of hydrogel towards methylene blue was 434.8 mg g(-1). The hydrogel also exhibited higher separation selectivity to Pb(2+) than Cu(2+). The methylene blue adsorbed onto the hydrogel membrane can be photocatalytically degraded by Fenton agent and the hydrogel membrane could be recycled at least five times without obvious loss in mechanical properties. In conclusion, this presentation demonstrates a convenient strategy to prepare tough and elastic clay nanocomposite hydrogel, which can not only be applied as recyclable membrane for the photocatalytic degradation of organic dye, but also for the recovery of valuables.Item Open Access Heterogeneities in fullerene nanoparticle aggregates affecting reactivity, bioactivity, and transport.(ACS Nano, 2010-09-28) Chae, So-Ryong; Badireddy, Appala R; Farner Budarz, Jeffrey; Lin, Shihong; Xiao, Yao; Therezien, Mathieu; Wiesner, Mark RProperties of nanomaterial suspensions are typically summarized by average values for the purposes of characterizing these materials and interpreting experimental results. We show in this work that the heterogeneity in aqueous suspensions of fullerene C(60) aggregates (nC(60)) must be taken into account for the purposes of predicting nanomaterial transport, exposure, and biological activity. The production of reactive oxygen species (ROS), microbial inactivation, and the mobility of the aggregates of the nC(60) in a silicate porous medium all increased as suspensions were fractionated to enrich with smaller aggregates by progressive membrane filtration. These size-dependent differences are attributed to an increasing degree of hydroxylation of nC(60) aggregates with decreasing size. As the quantity and influence of these more reactive fractions may increase with time, experiments evaluating fullerene transport and toxicity end points must take into account the evolution and heterogeneity of fullerene suspensions.Item Open Access In situ synthesis of DNA microarray on functionalized cyclic olefin copolymer substrate.(ACS Appl Mater Interfaces, 2010-02) Saaem, I; Ma, K; Marchi, A; LaBean, T; Tian, JThermoplastic materials such as cyclic-olefin copolymers (COC) provide a versatile and cost-effective alternative to the traditional glass or silicon substrate for rapid prototyping and industrial scale fabrication of microdevices. To extend the utility of COC as an effective microarray substrate, we developed a new method that enabled for the first time in situ synthesis of DNA oligonucleotide microarrays on the COC substrate. To achieve high-quality DNA synthesis, a SiO(2) thin film array was prepatterned on the inert and hydrophobic COC surface using RF sputtering technique. The subsequent in situ DNA synthesis was confined to the surface of the prepatterned hydrophilic SiO(2) thin film features by precision delivery of the phosphoramidite chemistry using an inkjet DNA synthesizer. The in situ SiO(2)-COC DNA microarray demonstrated superior quality and stability in hybridization assays and thermal cycling reactions. Furthermore, we demonstrate that pools of high-quality mixed-oligos could be cleaved off the SiO(2)-COC microarrays and used directly for construction of DNA origami nanostructures. It is believed that this method will not only enable synthesis of high-quality and low-cost COC DNA microarrays but also provide a basis for further development of integrated microfluidics microarrays for a broad range of bioanalytical and biofabrication applications.Item Open Access Small molecule delivery across a perforated artificial membrane by thermoreversible hydrogel poloxamer 407.(Colloids and surfaces. B, Biointerfaces, 2019-10) Santimetaneedol, A; Wang, Z; Arteaga, DN; Aksit, A; Prevoteau, C; Yu, M; Chiang, H; Fafalis, D; Lalwani, AK; Kysar, JWMicroperforations in the round window membrane have been suggested for enhancing the rate and reliability of drug delivery into the cochlea. Intratympanic injection, the most common delivery method, involves injecting therapy into the middle ear to establish a reservoir from which drug diffuses across the round window membrane into the cochlea. This process is highly variable because (i) the reservoir, if liquid, can lose contact with the membrane and (ii) diffusion across the membrane is intrinsically variable even with a stable reservoir. To address these respective sources of variability, we compared the thermoreversible hydrogel poloxamer 407 (P407) to saline as a drug carrier and studied the effect of membrane microperforations on drug diffusion rate. We used Rhodamine B as a drug proxy to measure permeance across an artificial membrane in a horizontal diffusion cell. We found that permeance of Rhodamine B from a saline reservoir was an order of magnitude higher than that from a P407 reservoir across unperforated membranes. Moreover, permeance increased with total perforation cross-sectional area regardless of number of perforations (p < 0.05 for all saline-based experiments), but the same association was not found with P407. Rather, for a P407 reservoir, only a large perforation increased permeance (p < 0.001), while multiple small perforations did not (p = 0.749). These results confirm that for drug dissolved in saline, multiple small perforations can effectively enhance diffusion. However, for drug dissolved in P407, larger perforations are necessary.Item Open Access The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films.(Nanoscale, 2012-03-21) Bergin, SM; Rathmell, AR; Chen, YH; Charbonneau, P; Li, ZY; Wiley, BJThis article describes how the dimensions of nanowires affect the transmittance and sheet resistance of a random nanowire network. Silver nanowires with independently controlled lengths and diameters were synthesized with a gram-scale polyol synthesis by controlling the reaction temperature and time. Characterization of films composed of nanowires of different lengths but the same diameter enabled the quantification of the effect of length on the conductance and transmittance of silver nanowire films. Finite-difference time-domain calculations were used to determine the effect of nanowire diameter, overlap, and hole size on the transmittance of a nanowire network. For individual nanowires with diameters greater than 50 nm, increasing diameter increases the electrical conductance to optical extinction ratio, but the opposite is true for nanowires with diameters less than this size. Calculations and experimental data show that for a random network of nanowires, decreasing nanowire diameter increases the number density of nanowires at a given transmittance, leading to improved connectivity and conductivity at high transmittance (>90%). This information will facilitate the design of transparent, conducting nanowire films for flexible displays, organic light emitting diodes and thin-film solar cells.