Browsing by Subject "Methylthioadenosine"
- Results Per Page
- Sort Options
Item Open Access Functional and Therapeutic Relevance of MTAP Deletion in Glioblastoma(2019) Hansen, Landon JohnPrimary glioblastoma (GBM) is the most common and lethal primary malignant brain tumor, with a median patient survival of only 15 months from the time of diagnosis. GBM is particularly challenging to treat due to its aggressive and invasive nature, and has proven resistant to therapeutic advances, with no significant improvement in outcomes over the past several decades. Understanding of the molecular characteristics of GBM, however, has improved dramatically, with genetic, epigenetic, and transcriptomic classifications now able to divide GBM into subtypes that provide prognostic information and guide the organization of clinical trials. One of the most frequent genetic alterations that has been identified in GBM is homozygous deletion of the methylthioadenosine phosphorylase (MTAP) gene, which occurs in 50% of all GBM cases. Despite its common occurrence, it is unclear what contribution MTAP loss makes in the pathogenesis of GBM or whether this genetic alteration can be used as a therapeutic target.
MTAP is a metabolic enzyme in the salvage pathway of adenine and methionine and its absence results in the accumulation of its metabolic substrate, methylthioadenosine (MTA), within and around tumor cells. MTA is known to inhibit activity of methyltransferases, raising the possibility that MTA accumulation is interfering with regulatory processes within the cell.
We utilized patient-derived GBM cell lines in vitro and GBM xenografts in vivo, to characterize consequence of MTAP deletion in GBM through analysis of DNA methylation, gene expression, and response to therapeutic agents. We show that MTAP loss promotes the formation of glioma stem-like cells through epigenomic dysregulation. We show these epigenetic changes influence gene expression patterns and alter the sensitivity to epigenome-modifying drugs. We also demonstrate that MTAP-null GBM cells are more tumorigenic in experimental models and that patients with MTAP deletion have poor disease outcomes. Finally, we show that targeting metabolic liabilities of MTAP-null cells through inhibition of de novo purine synthesis specifically depletes the therapy-resistant, stem-like cell subpopulation of GBM.
As the final component of this work, we explore the impact of MTA accumulation in the tumor microenvironment. We found that MTA alters the function of immune cells through adenosine receptor signaling, suggesting that modulation of adenosine receptor signaling in GBM may improve the native immune response and the efficacy of immunotherapeutics in the treatment of this disease.
This work thus establishes MTAP deletion as a pathogenic genetic alteration in the process of gliomagenesis by illustrating it’s contribution to the formation of the cancer cell epigenomic landscape, stemness characteristics, growth, and response to therapeutic agents.
Item Open Access Utilizing Cellular GWAS as a Springboard to Understand Complex Host-Pathogen Interactions(2022) Bourgeois, Jeffrey StevenIf nothing else, the 2019 Coronavirus pandemic has made it abundantly clear that understanding the mechanisms of infectious disease is imperative to the survival of our species. While the last fifty years of developments in molecular biology has accelerated our ability to study microbial pathogens, limitations in pathogen tropism, microbial survival in laboratory conditions, uneven sampling of human cohorts across geographical and socioeconomic lines, and heterogeneous complexity during human infection have limited our ability to study complex mechanisms of human susceptibility to infectious disease. In this work, I build on recent developments in utilizing High-throughput Human in vitro Susceptibility Testing (Hi-HOST) to not only (a) identify novel sites in the human genome that contribute to natural variation in infectious disease susceptibility based on highly quantifiable cellular phenotypes, but (b) use these sites as a springboard to understand the entire, complex host-pathogen interaction. From this perspective, I paired the model pathogen Salmonella enterica and the Hi-HOST system to identify that natural variation in the mammalian gene arhgef26 contributes to susceptibility to Salmonella invasion. I used this finding as a starting point to fully explore the role of ARHGEF26 during infection, redefining its role in invasion, inflammation, and its interaction with host and bacterial proteins during the process. Similarly, I used prior Hi-HOST findings that methionine metabolism influences the host response to Salmonella enterica serovar Typhimurium (S. Typhimurium) as a launching point to investigate the impacts of host and bacterial metabolism on the virulence of S. Typhimurium. I found that the metabolite methylthioadenosine is a potent inhibitor of S. Typhimurium type III secretion, motility, and invasion. Finally, I mechanistically explain some of these findings by linking methionine metabolism to DNA methylation using a novel approach to integrate the Salmonella Typhimurium methylome and transcriptome. In sum, these findings demonstrate the ability for cellular GWAS to serve as a launching point to understand complex host-pathogen interactions.