Browsing by Subject "Mice, 129 Strain"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Open Access A Peptide Uncoupling BDNF Receptor TrkB from Phospholipase Cγ1 Prevents Epilepsy Induced by Status Epilepticus.(Neuron, 2015-11-04) Gu, Bin; Huang, Yang Zhong; He, Xiao-Ping; Joshi, Rasesh B; Jang, Wonjo; McNamara, James OThe BDNF receptor tyrosine kinase, TrkB, underlies nervous system function in both health and disease. Excessive activation of TrkB caused by status epilepticus promotes development of temporal lobe epilepsy (TLE), revealing TrkB as a therapeutic target for prevention of TLE. To circumvent undesirable consequences of global inhibition of TrkB signaling, we implemented a novel strategy aimed at selective inhibition of the TrkB-activated signaling pathway responsible for TLE. Our studies of a mouse model reveal that phospholipase Cγ1 (PLCγ1) is the dominant signaling effector by which excessive activation of TrkB promotes epilepsy. We designed a novel peptide (pY816) that uncouples TrkB from PLCγ1. Treatment with pY816 following status epilepticus inhibited TLE and prevented anxiety-like disorder yet preserved neuroprotective effects of endogenous TrkB signaling. We provide proof-of-concept evidence for a novel strategy targeting receptor tyrosine signaling and identify a therapeutic with promise for prevention of TLE caused by status epilepticus in humans.Item Open Access Gene expression-based classifiers identify Staphylococcus aureus infection in mice and humans.(PLoS One, 2013) Ahn, Sun Hee; Tsalik, Ephraim L; Cyr, Derek D; Zhang, Yurong; van Velkinburgh, Jennifer C; Langley, Raymond J; Glickman, Seth W; Cairns, Charles B; Zaas, Aimee K; Rivers, Emanuel P; Otero, Ronny M; Veldman, Tim; Kingsmore, Stephen F; Kingsmore, Stephen F; Lucas, Joseph; Woods, Christopher W; Ginsburg, Geoffrey S; Fowler, Vance GStaphylococcus aureus causes a spectrum of human infection. Diagnostic delays and uncertainty lead to treatment delays and inappropriate antibiotic use. A growing literature suggests the host's inflammatory response to the pathogen represents a potential tool to improve upon current diagnostics. The hypothesis of this study is that the host responds differently to S. aureus than to E. coli infection in a quantifiable way, providing a new diagnostic avenue. This study uses Bayesian sparse factor modeling and penalized binary regression to define peripheral blood gene-expression classifiers of murine and human S. aureus infection. The murine-derived classifier distinguished S. aureus infection from healthy controls and Escherichia coli-infected mice across a range of conditions (mouse and bacterial strain, time post infection) and was validated in outbred mice (AUC>0.97). A S. aureus classifier derived from a cohort of 94 human subjects distinguished S. aureus blood stream infection (BSI) from healthy subjects (AUC 0.99) and E. coli BSI (AUC 0.84). Murine and human responses to S. aureus infection share common biological pathways, allowing the murine model to classify S. aureus BSI in humans (AUC 0.84). Both murine and human S. aureus classifiers were validated in an independent human cohort (AUC 0.95 and 0.92, respectively). The approach described here lends insight into the conserved and disparate pathways utilized by mice and humans in response to these infections. Furthermore, this study advances our understanding of S. aureus infection; the host response to it; and identifies new diagnostic and therapeutic avenues.Item Open Access Genome-wide identification of autosomal genes with allelic imbalance of chromatin state.(PloS one, 2017-01) Savol, Andrej J; Wang, Peggy I; Jeon, Yesu; Colognori, David; Yildirim, Eda; Pinter, Stefan F; Payer, Bernhard; Lee, Jeannie T; Sadreyev, Ruslan IIn mammals, monoallelic gene expression can result from X-chromosome inactivation, genomic imprinting, and random monoallelic expression (RMAE). Epigenetic regulation of RMAE is not fully understood. Here we analyze allelic imbalance in chromatin state of autosomal genes using ChIP-seq in a clonal cell line. We identify approximately 3.7% of autosomal genes that show significant differences between chromatin states of two alleles. Allelic regulation is represented among several functional gene categories including histones, chromatin modifiers, and multiple early developmental regulators. Most cases of allelic skew are produced by quantitative differences between two allelic chromatic states that belong to the same gross type (active, silent, or bivalent). Combinations of allelic states of different types are possible but less frequent. When different chromatin marks are skewed on the same gene, their skew is coordinated as a result of quantitative relationships between these marks on each individual allele. Finally, combination of allele-specific densities of chromatin marks is a quantitative predictor of allelic skew in gene expression.Item Open Access Persisting neurobehavioral effects of developmental copper exposure in wildtype and metallothionein 1 and 2 knockout mice.(BMC pharmacology & toxicology, 2016-11) Petro, Ann; Sexton, Hannah G; Miranda, Caroline; Rastogi, Anit; Freedman, Jonathan H; Levin, Edward DBackground
Metallothioneins (MT) are small proteins, which are crucial for the distribution of heavy and transition metals. Previously, we found in mice that knockout of MT 1 and 2 genes (MTKO) impaired spatial learning and potentiated the learning impairment caused by developmental mercury exposure. The current study examined the neurocognitive and neurochemical effects of MTKO with the developmental copper (Cu) supplementation.Methods
Wildtype (WT) and MTKO mice were given supplemental Cu (0, 10 or 50 mg/l) in their drinking water during gestation and until weaning. When the mice were young adults they were trained on the win-shift 8-arm radial maze test of spatial learning and memory. After cognitive testing, their brains were analyzed for norepinepherine, dopamine and serotonin levels.Results
In the spatial learning test, wildtype mice showed the normal sex difference with males performing more accurately than the females. This effect was eliminated by MTKO and restored by moderate Cu supplementation during development. In neurochemical studies, MTKO caused a significant overall increase in serotonin in all of the regions studied: the frontal cortex, posterior cortex, hippocampus, striatum, midbrain, and brainstem. MTKO also caused a significant increase in norepinepherine in the brainstem and hippocampus. In wildtype mice, Cu supplementation during development caused a significant decline in dopamine and norepinepherine in the midbrain and dopamine in the frontal cortex. These effects were blocked by MTKO.Conclusions
The normal sex difference in spatial working memory accuracy, which was eliminated by MTKO, was restored by moderate copper supplementation. MTKO increased serotonin across all brain areas studied and increased norepinepherine only in the hippocampus and brainstem. MTKO blocked copper-induced decreases in dopamine and norepinepherine in the midbrain and dopamine in the frontal cortex.Item Open Access Type 2 alveolar cells are stem cells in adult lung.(The Journal of clinical investigation, 2013-07) Barkauskas, Christina E; Cronce, Michael J; Rackley, Craig R; Bowie, Emily J; Keene, Douglas R; Stripp, Barry R; Randell, Scott H; Noble, Paul W; Hogan, Brigid LMGas exchange in the lung occurs within alveoli, air-filled sacs composed of type 2 and type 1 epithelial cells (AEC2s and AEC1s), capillaries, and various resident mesenchymal cells. Here, we use a combination of in vivo clonal lineage analysis, different injury/repair systems, and in vitro culture of purified cell populations to obtain new information about the contribution of AEC2s to alveolar maintenance and repair. Genetic lineage-tracing experiments showed that surfactant protein C-positive (SFTPC-positive) AEC2s self renew and differentiate over about a year, consistent with the population containing long-term alveolar stem cells. Moreover, if many AEC2s were specifically ablated, high-resolution imaging of intact lungs showed that individual survivors undergo rapid clonal expansion and daughter cell dispersal. Individual lineage-labeled AEC2s placed into 3D culture gave rise to self-renewing "alveolospheres," which contained both AEC2s and cells expressing multiple AEC1 markers, including HOPX, a new marker for AEC1s. Growth and differentiation of the alveolospheres occurred most readily when cocultured with primary PDGFRα⁺ lung stromal cells. This population included lipofibroblasts that normally reside close to AEC2s and may therefore contribute to a stem cell niche in the murine lung. Results suggest that a similar dynamic exists between AEC2s and mesenchymal cells in the human lung.