Browsing by Subject "Microbiota"
Results Per Page
Sort Options
Item Open Access A Phylogenetic, Ecological, and Functional Characterization of Non-Photoautotrophic Bacteria in the Lichen Microbiome(2011) Hodkinson, Brendan P.Although common knowledge dictates that the lichen thallus is formed solely by a fungus (mycobiont) that develops a symbiotic relationship with an alga and/or cyanobacterium (photobiont), the non-photoautotrophic bacteria found in lichen microbiomes are increasingly regarded as integral components of lichen thalli and significant players in the ecology and physiology of lichens. Despite recent interest in this topic, the phylogeny, ecology, and function of these bacteria remain largely unknown. The experiments presented in this dissertation employ culture-free methods to examine the bacteria housed in these unique environments to ultimately inform an assessment of their status with regard to the lichen symbiosis. Microbiotic surveys of lichen thalli using new oligonucleotide-primers targeting the 16S SSU rRNA gene (developed as part of this study to target Bacteria, but exclude sequences derived from chloroplasts and Cyanobacteria) revealed the identity of diverse bacterial associates, including members of an undescribed lineage in the order Rhizobiales (Lichen-Associated Rhizobiales 1; `LAR1'). It is shown that the LAR1 bacterial lineage, uniquely associated with lichen thalli, is widespread among lichens formed by distantly related lichen-forming fungi and is found in lichens collected from the tropics to the arctic. Through extensive molecular cloning of the 16S rRNA gene and 454 16S amplicon sequencing, ecological trends were inferred based on mycobiont, photobiont, and geography. The implications for using lichens as microcosms to study larger principles of ecology and evolution are discussed. In addition to phylogenetic and ecological studies of lichen-associated bacterial communities, this dissertation provides a first assessment of the functions performed by these bacteria within the lichen microbiome in nature through 454 sequencing of two different lichen metatranscriptomes (one from a chlorolichen, Cladonia grayi, and one from a cyanolichen, Peltigera praetextata). Non-photobiont bacterial genes for nitrogen fixation were not detected in the Cladonia thallus (even though transcripts of cyanobacterial nitrogen fixation genes from two different pathways were detected in the cyanolichen thallus), implying that the role of nitrogen fixation in the maintenance of chlorolichens might have previously been overstated. Additionally, bacterial polyol dehydrogenases were found to be expressed in chlorolichen thalli (along with fungal polyol dehydrogenases and kinases from the mycobiont), suggesting the potential for bacteria to begin the process of breaking down the fixed carbon compounds secreted by the photobiont for easier metabolism by the mycobiont. This first look at the group of functional genes expressed at the level of transcription provides initial insights into the symbiotic network of interacting genes within the lichen microbiome.
Item Open Access A plant genetic network for preventing dysbiosis in the phyllosphere.(Nature, 2020-04-08) Chen, Tao; Nomura, Kinya; Wang, Xiaolin; Sohrabi, Reza; Xu, Jin; Yao, Lingya; Paasch, Bradley C; Ma, Li; Kremer, James; Cheng, Yuti; Zhang, Li; Wang, Nian; Wang, Ertao; Xin, Xiu-Fang; He, Sheng YangThe aboveground parts of terrestrial plants, collectively called the phyllosphere, have a key role in the global balance of atmospheric carbon dioxide and oxygen. The phyllosphere represents one of the most abundant habitats for microbiota colonization. Whether and how plants control phyllosphere microbiota to ensure plant health is not well understood. Here we show that the Arabidopsis quadruple mutant (min7 fls2 efr cerk1; hereafter, mfec)1, simultaneously defective in pattern-triggered immunity and the MIN7 vesicle-trafficking pathway, or a constitutively activated cell death1 (cad1) mutant, carrying a S205F mutation in a membrane-attack-complex/perforin (MACPF)-domain protein, harbour altered endophytic phyllosphere microbiota and display leaf-tissue damage associated with dysbiosis. The Shannon diversity index and the relative abundance of Firmicutes were markedly reduced, whereas Proteobacteria were enriched in the mfec and cad1S205F mutants, bearing cross-kingdom resemblance to some aspects of the dysbiosis that occurs in human inflammatory bowel disease. Bacterial community transplantation experiments demonstrated a causal role of a properly assembled leaf bacterial community in phyllosphere health. Pattern-triggered immune signalling, MIN7 and CAD1 are found in major land plant lineages and are probably key components of a genetic network through which terrestrial plants control the level and nurture the diversity of endophytic phyllosphere microbiota for survival and health in a microorganism-rich environment.Item Open Access Chemical and Microbial Regulation of Epithelial Homeostasis and Innate Immunity(2019) Espenschied, Scott TedmundThe intestine is a multifunctional organ that must perform dichotomous roles in order to maintain health. While it is the primary site of absorption of dietary nutrients, it must also serve as a barrier to both the multitude of microorganisms which reside in the intestinal lumen (the microbiota) and foreign compounds (xenobiotics) which can be toxic to the host. Moreover, the microbiota are required for normal physiology, regulating immunological development, metabolism and behavior. Understanding how the intestine maintains homeostasis and responds to insult in the face of a chemically and microbially complex and dynamic environment is not only a fundamental question of biology, but has important implications for human health. We used zebrafish in order to better understand how the intestine responds to xenobiotics (Chapter 2) and transduces signals from the microbiota to the immune system (Chapter 3).
In Chapter 1, I introduce the complex and reciprocal interactions between xenobiotics, the microbiota, and the host. I highlight examples whereby the microbiota modulates the activity and toxicity of pharmaceuticals, with relevance to diseases of different organ systems. I also describe mechanisms by which the intestine responds to xenobiotic toxicity, and finally advocate for the use of novel model organisms to improve our understanding of these complex interactions.
In Chapter 2, I present our work using the NSAID Glafenine to explore how the intestine responds to xenobiotic challenge. Using transgenic zebrafish and high resolution in vivo imaging, we demonstrate loss epithelial cells in a live animal following xenobiotic challenge. Moreover, Glafenine causes intestinal inflammation, which is potentiated by microbial dysbiosis. We also show that Glafenine can directly alter microbiota composition. Glafenine treatment resulted in activation of the unfolded protein response (UPR), and while pharmacological inhibition of the UPR sensor Ire1a suppressed Glafenine-induced IEC loss, this was associated with increased inflammation and mortality. Ultimately, we demonstrate that Glafenine-induced intestinal toxicity is likely due to off-target inhibition of multidrug resistance (MDR) efflux pumps, as other MDR inhibitors were able to elicit similar phenotypes. Collectively, our findings revealed that (i) MDRs serve an evolutionarily conserved role in maintenance of intestinal homeostasis and (ii) IEC delamination is a protective mechanism which serves to limit inflammation and promote animal survival.
While studies in gnotobiotic mice and zebrafish have demonstrated that the microbiota are required for normal development of the innate immune system, the underlying host and microbial signals which mediate these effects remain largely unknown. We had previously demonstrated that motility of gut commensal bacteria in zebrafish was important for successful colonization of some strains and stimulation of the normal host innate immune response to colonization. In Chapter 3, we describe how microbiota colonization is associated with changes in the PMN transcriptome in addition to promoting systemic abundance and distribution of myeloid cells. Intriguingly, the only pattern recognition receptors found to be differentially expressed in PMNs were the Flagellin receptors tlr5a and tlr5b. Colonization of zebrafish larvae with bacteria lacking Flagellin resulted in attenuated PMN transcriptional activation compared to larvae colonized with isogenic wild type (WT) bacteria. We subsequently demonstrated that direct exposure to purified Flagellin can potently induce transcriptional activation in zebrafish PMNs. These findings identify how the presence of the microbe associated molecular pattern (MAMP) Flagellin serves as a bacterial cue from the microbiota which promotes PMN activation. In Chapter 4, I offer perspectives as to how the Glafenine-zebrafish model system can be used to more deeply investigate host-microbiota-xenobiotic interactions, and genetic, biochemical and computational analyses can help delineate mechanisms by which MDR efflux pumps function in the maintenance of intestinal homeostasis. Moreover, I propose the use of bacterial screens as well as inflammatory and infectious challenge assays in order to better understand the functional outcomes of PMN transcriptional activation elicited by microbiota-derived signals such as Flagellin.
Item Open Access Chromatin Accessibility Dynamics Underlying Development and Disease(2015) Frank, Christopher L.Despite a largely static DNA sequence, our genomes are incredibly malleable. Comparative studies of chromatin features between different cell types, tissues, and species have revealed tremendous differences in how the genome is accessed, transcribed, and replicated. However, how the dynamics of chromatin accessibility contribute to development, environmental response, and disease status has only begun to be appreciated. In this work we identified chromatin accessibility changes by DNase-seq in three diverse processes: in granule neurons of the developing cerebellum, with intestinal epithelial cells in the absence of a normal microbiota, and with myelogenous leukemia cells in response to histone deacetylase inhibitor treatments. In all cases, we coupled these analyses with RNA-seq assays to identify concurrent transcriptional changes. By mapping the changes to these genome-wide signals we defined the contribution of local chromatin structure to the transcriptional programs underlying these processes, and improved our understanding of their relation to other chromatin changes like histone modifications. Furthermore we demonstrated use of the strongest accessibility changes to identify transcription factors critical for these processes by finding enrichment of their binding motifs. For a few of these key factors, depletion or overexpression of the protein was sufficient to regulate the expression of predicted target genes or exert limited chromatin accessibility changes, demonstrating the functional significance of these proteins in these processes. Together these studies have informed our understanding of the role chromatin accessibility changes play in development and environmental responses while also proving their utility for key regulator identification.
Item Open Access Dendritic cells in the intestine: sensing of microbiota and inducing of inflammatory bowel disease(2017) Liang, JieDendritic cells (DCs) are potent antigen presenting cells (APC) that sense microbes and induce T cell activation and functional differentiation. The APC function of DCs is upregulated by the signaling pathway downstream of the microbial sensing receptor, a process well studied during pathogen infection and immunization. Multiple lines of evidence suggested that DCs in the intestine lamina propria (LP-DCs) frequently interact with the innocuous microbiota, and through these interactions LP-DCs support intestinal immune homeostasis. However, DC responses to microbiota, if not regulated, can give rise to inflammatory T cells and trigger inflammatory bowel disease (IBD). The DC subsets, DC functions and signaling pathways that induce inflammatory T cells remain incompletely characterized. Here, we demonstrated that mice lacking signaling attenuator A20 (A20cko mice) in DCs develop spontaneous small intestine inflammation that is dependent of microbiota, DCs and T cells. LP-DCs induce inflammatory T cells and that the signals perceived and APC functions are unique for three distinct LP-DC subsets. Thus, while CD103+CD11b- DCs exclusively upregulate their ability to instruct IFNγ+ T cells, CD103+CD11b+ DCs exclusively upregulate their ability to instruct IL-17+ T cells. Of note, APC functions of both DC subsets are upregulated in a MyD88-independent fashion. In contrast, CD103-CD11b+ DCs instruct both IFNγ+ and IL-17+ T cells, and only the IL-17-inducing APC functions require MyD88. In disease pathogenesis, both CD103-CD11b+ and CD103+CD11b+ DCs expand pathologic Th17 cells.
Although MyD88 pathways are potent inducer of intestinal inflammation in the colitis of IL-10 knockout mice and upon transferring of naïve T cells into Rag-deficient hosts, MyD88 pathways are not required for the inflammation of small intestine in A20cko mice. Among the MyD88-independent signaling pathways that could mediate host interaction with microbiota, Dectin-1 pathway is of particular interest because both the receptor Dectin-1 and the downstream signaling molecule CARD9 are IBD-associated genes. Additionally, the defect in either molecule influences the severity of the intestinal inflammation in mouse. We established that the production of inflammatory cytokines downstream of the Dectin-1 pathway is restricted by A20. Mechanistically, A20 inhibits TRAF6 ubiquitination downstream of the Dectin-1 pathway, thereby controlling NFκB and Jnk activation. Although we showed that CD103-CD11b+ and CD103+CD11b+ DCs express Dectin-1 and CARD9, the Dectin-1 pathway is not required for the upregulation of DC function and expansion of inflammatory T cells in the intestine of A20cko mice. Thus, our studies have unveiled a critical role of MyD88-independent pathways in mediating the interaction of the microbiota and LP-DCs. MyD88-independent pathway is capable of driving functional maturation of LP-DCs, pathological expansion of CD4 T cells, and the inflammatory disease in the small intestine.
Item Open Access Elucidating the impact of microbial community biodiversity on pharmaceutical biotransformation during wastewater treatment.(Microbial biotechnology, 2018-11) Stadler, Lauren B; Delgado Vela, Jeseth; Jain, Sunit; Dick, Gregory J; Love, Nancy GIn addition to removing organics and other nutrients, the microorganisms in wastewater treatment plants (WWTPs) biotransform many pharmaceuticals present in wastewater. The objective of this study was to examine the relationship between pharmaceutical biotransformation and biodiversity in WWTP bioreactor microbial communities and identify taxa and functional genes that were strongly associated with biotransformation. Dilution-to-extinction of an activated sludge microbial community was performed to establish cultures with a gradient of microbial biodiversity. Batch experiments were performed using the dilution cultures to determine biotransformation extents of several environmentally relevant pharmaceuticals. With this approach, because the communities were all established from the same original community, and using sequencing of the 16S rRNA and metatranscriptome, we identified candidate taxa and genes whose activity and transcript abundances associated with the extent of individual pharmaceutical biotransformation and were lost across the biodiversity gradient. Metabolic genes such as dehydrogenases, amidases and monooxygenases were significantly associated with pharmaceutical biotransformation, and five genera were identified whose activity significantly associated with pharmaceutical biotransformation. Understanding how biotransformation relates to biodiversity will inform the design of biological WWTPs for enhanced removal of chemicals that negatively impact environmental health.Item Open Access HIV-1 envelope gp41 antibodies can originate from terminal ileum B cells that share cross-reactivity with commensal bacteria.(Cell Host Microbe, 2014-08-13) Trama, A; Moody, MA; Alam, SM; Jaeger, F; Lockwood, B; Parks, R; Lloyd, K; Stolarchuk, C; Scearce, R; Foulger, A; Marshall, D; Whitesides, J; Jeffries, T; Wiehe, K; Morris, L; Lambson, B; Soderberg, K; Hwang, K; Tomaras, G; Vandergrift, N; Jackson, KL; Roskin, K; Boyd, S; Kepler, T; Liao, H; Haynes, BMonoclonal antibodies derived from blood plasma cells of acute HIV-1-infected individuals are predominantly targeted to the HIV Env gp41 and cross-reactive with commensal bacteria. To understand this phenomenon, we examined anti-HIV responses in ileum B cells using recombinant antibody technology and probed their relationship to commensal bacteria. The dominant ileum B cell response was to Env gp41. Remarkably, a majority (82%) of the ileum anti-gp41 antibodies cross-reacted with commensal bacteria, and of those, 43% showed non-HIV-1 antigen polyreactivity. Pyrosequencing revealed shared HIV-1 antibody clonal lineages between ileum and blood. Mutated immunoglobulin G antibodies cross-reactive with both Env gp41 and microbiota could also be isolated from the ileum of HIV-1 uninfected individuals. Thus, the gp41 commensal bacterial antigen cross-reactive antibodies originate in the intestine, and the gp41 Env response in HIV-1 infection can be derived from a preinfection memory B cell pool triggered by commensal bacteria that cross-react with Env.Item Open Access Is there foul play in the leaf pocket? The metagenome of floating fern Azolla reveals endophytes that do not fix N2 but may denitrify.(The New phytologist, 2018-01) Dijkhuizen, LW; Brouwer, P; Bolhuis, H; Reichart, G; Koppers, N; Huettel, B; Bolger, AM; Li, F; Cheng, S; Liu, XDinitrogen fixation by Nostoc azollae residing in specialized leaf pockets supports prolific growth of the floating fern Azolla filiculoides. To evaluate contributions by further microorganisms, the A. filiculoides microbiome and nitrogen metabolism in bacteria persistently associated with Azolla ferns were characterized. A metagenomic approach was taken complemented by detection of N2 O released and nitrogen isotope determinations of fern biomass. Ribosomal RNA genes in sequenced DNA of natural ferns, their enriched leaf pockets and water filtrate from the surrounding ditch established that bacteria of A. filiculoides differed entirely from surrounding water and revealed species of the order Rhizobiales. Analyses of seven cultivated Azolla species confirmed persistent association with Rhizobiales. Two distinct nearly full-length Rhizobiales genomes were identified in leaf-pocket-enriched samples from ditch grown A. filiculoides. Their annotation revealed genes for denitrification but not N2 -fixation. 15 N2 incorporation was active in ferns with N. azollae but not in ferns without. N2 O was not detectably released from surface-sterilized ferns with the Rhizobiales. N2 -fixing N. azollae, we conclude, dominated the microbiome of Azolla ferns. The persistent but less abundant heterotrophic Rhizobiales bacteria possibly contributed to lowering O2 levels in leaf pockets but did not release detectable amounts of the strong greenhouse gas N2 O.Item Open Access Modulation of microbial community dynamics by spatial partitioning.(Nature chemical biology, 2022-04) Wu, Feilun; Ha, Yuanchi; Weiss, Andrea; Wang, Meidi; Letourneau, Jeffrey; Wang, Shangying; Luo, Nan; Huang, Shuquan; Lee, Charlotte T; David, Lawrence A; You, LingchongMicrobial communities inhabit spatial architectures that divide a global environment into isolated or semi-isolated local environments, which leads to the partitioning of a microbial community into a collection of local communities. Despite its ubiquity and great interest in related processes, how and to what extent spatial partitioning affects the structures and dynamics of microbial communities are poorly understood. Using modeling and quantitative experiments with simple and complex microbial communities, we demonstrate that spatial partitioning modulates the community dynamics by altering the local interaction types and global interaction strength. Partitioning promotes the persistence of populations with negative interactions but suppresses those with positive interactions. For a community consisting of populations with both positive and negative interactions, an intermediate level of partitioning maximizes the overall diversity of the community. Our results reveal a general mechanism underlying the maintenance of microbial diversity and have implications for natural and engineered communities.Item Open Access Short-chain fatty acids are produced by zebrafish microbiota and influence glucose homeostasis(2018-04-20) Han, AlvinIncreasingly, attention has been drawn to the association between gut microbiomes and host health, particularly to the production of short-chain fatty acids (SCFA) from indigestible carbohydrates by colonic microbiota. It is known that the main SCFA produced by mammalian intestinal microbiota are acetate, propionate, and butyrate. These SCFA are a significant source of nutrition, providing 10% of a human’s caloric intake, 30% for many herbivores, and up to 70% in ruminants. Additionally, they play a variety of roles in human health: influencing metabolism, inhibiting pathogen growth, and improving nutrient uptake. However, relatively little is known about the production and function of SCFA in non-mammalian vertebrates. One model for studying gut physiology, metabolism, and development is the zebrafish (Danio rerio). The ease of access to transgenic tools and gnotobiotic manipulation, coupled with its establishment as a model system for studying many SCFA-associated physiological outcomes make zebrafish an attractive model system for studying SCFA. However, no studies have tested whether SCFA synthesis occurs in zebrafish intestines. We demonstrate that bacterial communities from adult zebrafish intestines synthesize all three main SCFA in vitro, though no SCFA was detected in zebrafish intestines in vivo. Importantly, we find that treating zebrafish larvae with propionate reduces liver phosphoenolpyruvate carboxykinase 1 expression and overall glucose level, suggesting SCFA production in the intestine may play an important role in regulating glucose homeostasis. These results suggest that zebrafish may serve as an important model to understand the physiological role of SCFA in the context of host-microbe interactions.