Browsing by Subject "Microdialysis"
Results Per Page
Sort Options
Item Open Access Enhanced rewarding properties of morphine, but not cocaine, in beta(arrestin)-2 knock-out mice.(J Neurosci, 2003-11-12) Bohn, Laura M; Gainetdinov, Raul R; Sotnikova, Tatyana D; Medvedev, Ivan O; Lefkowitz, Robert J; Dykstra, Linda A; Caron, Marc GThe reinforcing and psychomotor effects of morphine involve opiate stimulation of the dopaminergic system via activation of mu-opioid receptors (muOR). Both mu-opioid and dopamine receptors are members of the G-protein-coupled receptor (GPCR) family of proteins. GPCRs are known to undergo desensitization involving phosphorylation of the receptor and the subsequent binding of beta(arrestins), which prevents further receptor-G-protein coupling. Mice lacking beta(arrestin)-2 (beta(arr2)) display enhanced sensitivity to morphine in tests of pain perception attributable to impaired desensitization of muOR. However, whether abrogating muOR desensitization affects the reinforcing and psychomotor properties of morphine has remained unexplored. In the present study, we examined this question by assessing the effects of morphine and cocaine on locomotor activity, behavioral sensitization, conditioned place preference, and striatal dopamine release in beta(arr2) knock-out (beta(arr2)-KO) mice and their wild-type (WT) controls. Cocaine treatment resulted in very similar neurochemical and behavioral responses between the genotypes. However, in the beta(arr2)-KO mice, morphine induced more pronounced increases in striatal extracellular dopamine than in WT mice. Moreover, the rewarding properties of morphine in the conditioned place preference test were greater in the beta(arr2)-KO mice when compared with the WT mice. Thus, beta(arr2) appears to play a more important role in the dopaminergic effects mediated by morphine than those induced by cocaine.Item Open Access In Vitro and in Vivo Cytokine-Associated Immune Response to Biomaterials(2008-04-10) Schutte, Robert JamesThe success of implanted medical devices, such as biosensors, is dependent on the immune reaction to the surface of the implanted material. This immune reaction, termed the foreign body reaction, is potentially affected by the physical and chemical properties of the implanted material. Macrophages interact with the surface of the implanted material and secrete intercellular signals, including cytokines and growth factors, which direct the actions of immune cells in the surrounding tissue. The type and quantity of cytokines and growth factors produced by macrophages at an implant surface could be an indicator of the outcome of the foreign body reaction.
This study investigated the effect of the surface chemistry of an implanted device on the production of cytokines and growth factors. First, microdialysis sampling was characterized as a technique for collecting cytokines and growth factors from the tissue surrounding an implant. Based on this characterization, it was determined that a direct sampling method would be more suitable than microdialysis sampling for determining accurate tissue concentrations of cytokines and growth factors. Second, an in vitro model was developed and utilized to assess cytokine and growth factor production from monocyte/macrophage cultures seeded onto commonly implanted polymeric biomaterials with varying surface chemistries. The materials included in this study were polyethylene (PE), polyurethane (PU), polymethyl methacrylate (PMMA), expanded polytetrafluoroethylene (ePTFE), and a cytotoxic organo-tin polyvinyl chloride (ot-PVC) as a positive control. From this in vitro model, it was determined that the varying surface chemistries of these non-toxic materials, excluding ot-PVC, did not significantly affect the types and quantities of cytokines and growth factors produced. Finally, an in vivo model for evaluating the cytokine and growth factor response to an implanted biomaterial was utilized for comparison with the in vitro findings. In this model, biomaterials were implanted subcutaneously within the lumen of a stainless steel mesh cage. The mesh cage served to create a "pocket" where wound exudate fluid collected within the cage, surrounding the implanted biomaterial. The materials included in this study were PE, PU, and ot-PVC. Cytokines and growth factors produced at the material surface were sampled directly from the exudate fluid. The results from this in vivo study indicate that cytokine and growth factor production were not significantly impacted by the varying surface chemistries of the implanted biomaterials. The in vivo data support the findings from the in vitro model, suggesting that the foreign body reaction proceeds in a similar fashion for each of these non-cytotoxic, polymeric biomaterials with varying surface chemistries.
Item Open Access Increased in vivo glucose recovery via nitric oxide release.(Anal Chem, 2011-02-15) Nichols, SP; Le, NN; Klitzman, B; Schoenfisch, MHThe in vivo glucose recovery of subcutaneously implanted nitric oxide (NO)-releasing microdialysis probes was evaluated in a rat model using saturated NO solutions to steadily release NO. Such methodology resulted in a constant NO flux of 162 pmol cm(-2) s(-1) from the probe membrane over 8 h of perfusion daily. The in vivo effects of enhanced localized NO were evaluated by monitoring glucose recovery over a 14 day period, with histological analysis thereafter. A difference in glucose recovery was observed starting at 7 days for probes releasing NO relative to controls. Histological analysis at 14 days revealed lessened inflammatory cell density at the probe surface and decreased capsule thickness. Collectively, the results suggest that intermittent sustained NO release from implant surfaces may improve glucose diffusion for subcutaneously implanted sensors by mitigating the foreign body reaction.Item Embargo Investigating the Origin and Role of Catecholamines in the Visual Cortex of the Macaque Monkey(2023) Roach, CoreyThe catecholamines - norepinephrine and dopamine- are released into cortex from subcortical nuclei. It is classically assumed, for example, that dopamine receptors in cortex bind molecules released by dopaminergic axons. In the case of cortex, those axons would be the ascending fibers of the ventral tegmental area (VTA). Interestingly, dopamine receptors are found in all layers of primary visual cortex (V1), but the innervation from the VTA is mostly restricted to layers 1 and 6. This anatomical mismatch raises the question as to whether or not dopamine from the VTA is the primary ligand for dopamine receptors in V1. An alternative possibility is that the locus coeruleus (LC) co-releases dopamine and norepinephrine into V1. LC axons innervate all layers of V1 and are thus anatomically positioned to provide a ligand to activate dopamine receptors. Another possibility is that dopamine from VTA axons passively diffuses to the middle layers of V1 from layers 1 and 6, and a third possibility is that norepinephrine is binding to these middle layer dopamine receptors. I will present results from a series of studies that address these three possibilities in which I find that activation of the LC can elicit release of both catecholamines into V1 in a manner that depends on experimental parameters such as the intensity and frequency of electrical stimulation of the LC. The data suggests that the LC co-releases dopamine with norepinephrine in a state-dependent manner.
Item Open Access Social context-dependent singing-regulated dopamine.(J Neurosci, 2006-08-30) Sasaki, Aya; Sotnikova, Tatyana D; Gainetdinov, Raul R; Jarvis, Erich DLike the mammalian striatum, the songbird striatum receives dense dopaminergic input from the midbrain ventral tegmental area-substantia nigra pars compacta complex. The songbird striatum also contains a unique vocal nucleus, Area X, which has been implicated in song learning and social context-dependent song production. Area X shows increased neural firing and activity-dependent gene expression when birds sing, and the level of activation is higher and more variable during undirected singing relative to directed singing to other birds. Here we show in the first report of in vivo microdialysis in awake, behaving songbirds that singing is associated with increased dopamine levels in Area X. Dopamine levels are significantly higher with directed relative to undirected singing. This social context-dependent difference in dopamine levels requires the dopamine transporter, because local in vivo blockade of the transporter caused dopamine levels for undirected singing to increase to levels similar to that for directed singing, eliminating the social context-dependent difference. The increase in dopamine is presumably depolarization and vesicular release dependent, because adding of high K+ increased and removal of Ca2+ increased and decreased extracellular DA levels. Our findings implicate DA and molecules that control DA kinetics in singing behavior and social context-dependent brain function.