Browsing by Subject "Microfilament Proteins"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Open Access ACE-inhibition increases podocyte number in experimental glomerular disease independent of proliferation.(Journal of the renin-angiotensin-aldosterone system : JRAAS, 2015-06) Zhang, Jiong; Yanez, David; Floege, Anna; Lichtnekert, Julia; Krofft, Ronald D; Liu, Zhi-Hong; Pippin, Jeffrey W; Shankland, Stuart JObjective
The objective of this article is to test the effects of angiotensin-converting enzyme (ACE)-inhibition on glomerular epithelial cell number in an inducible experimental model of focal segmental glomerulosclerosis (FSGS).Background
Although ACE-inhibition has been shown to limit podocyte loss by enhancing survival, little is known about its effect on podocyte number following an abrupt decline in disease.Methods
Experimental FSGS was induced with cytotoxic antipodocyte antibody. Following induction, groups were randomized to receive the ACE-inhibitor enalapril, the smooth muscle relaxant hydralazine (blood pressure control) or drinking water. Blood pressure, kidney function and histology were measured seven and 14 days following disease induction.Results
Both glomerulosclerosis and urinary albumin-to-creatinine ratio were less in the ACE-inhibition arm at day 14. At day 7 of disease, mean podocyte numbers were 26% and 29% lower in the enalapril and hydralazine arms, respectively, compared to normal mice in which no antibody was injected. At day 14, the mean podocyte number was only 18% lower in the enalapril arm, but was 39% lower in the hydralazine arm compared to normal mice. Podocyte proliferation did not occur at any time in any group. Compared to water- or hydralazine-treated mice with FSGS, the enalapril arm had a higher mean number of glomerular parietal epithelial cells that co-expressed the podocyte proteins WT-1 and synaptopodin, as well as phospho-ERK.Conclusion
The results show following an abrupt decline in podocyte number, the initiation of ACE-inhibition but not hydralazine, was accompanied by higher podocyte number in the absence of proliferation. This was accompanied by a higher number of parietal epithelial cells that co-express podocyte proteins. Increasing podocyte number appears to be accompanied by reduced glomerulosclerosis.Item Open Access Axonal regrowth after spinal cord injury via chondroitinase and the tissue plasminogen activator (tPA)/plasmin system.(The Journal of neuroscience : the official journal of the Society for Neuroscience, 2011-10) Bukhari, Noreen; Torres, Luisa; Robinson, John K; Tsirka, Stella ESpinal cord injury (SCI) causes permanent debilitation due to the inability of axons to grow through established scars. Both the sugar chains and core proteins of chondroitin sulfate proteoglycans (CSPGs) are inhibitory for neurite regrowth. Chondroitinase ABC (ChABC) degrades the sugar chains and allows for synaptic plasticity, suggesting that after the sugar chain cleavage additional steps occur promoting a permissive microenvironment in the glial scar region. We report that the clearance of the core protein by the tissue plasminogen activator (tPA)/plasmin proteolytic system partially contributes to ChABC-promoted plasticity. tPA and plasmin are upregulated after SCI and degrade the deglycosylated CSPG proteins. Mice lacking tPA (tPA(-/-)) exhibit attenuated neurite outgrowth and blunted sensory and motor recovery despite ChABC treatment. Coadministration of ChABC and plasmin enhanced the tPA(-/-) phenotype and supported recovery in WT SCI mice. Collectively, these findings show that the tPA/plasmin cascade may act downstream of ChABC to allow for synergistic sensory and motor improvement compared with each treatment alone and suggest a potential new approach to enhance functional recovery after SCI.Item Open Access Calmodulin dissociation regulates Myo5 recruitment and function at endocytic sites.(EMBO J, 2010-09-01) Grötsch, Helga; Giblin, Jonathan P; Idrissi, Fatima-Zahra; Fernández-Golbano, Isabel-María; Collette, John R; Newpher, Thomas M; Robles, Virginia; Lemmon, Sandra K; Geli, María-IsabelMyosins-I are conserved proteins that bear an N-terminal motor head followed by a Tail Homology 1 (TH1) lipid-binding domain. Some myosins-I have an additional C-terminal extension (C(ext)) that promotes Arp2/3 complex-dependent actin polymerization. The head and the tail are separated by a neck that binds calmodulin or calmodulin-related light chains. Myosins-I are known to participate in actin-dependent membrane remodelling. However, the molecular mechanisms controlling their recruitment and their biochemical activities in vivo are far from being understood. In this study, we provided evidence suggesting the existence of an inhibitory interaction between the TH1 domain of the yeast myosin-I Myo5 and its C(ext). The TH1 domain prevented binding of the Myo5 C(ext) to the yeast WIP homologue Vrp1, Myo5 C(ext)-induced actin polymerization and recruitment of the Myo5 C(ext) to endocytic sites. Our data also indicated that calmodulin dissociation from Myo5 weakened the interaction between the neck and TH1 domains and the C(ext). Concomitantly, calmodulin dissociation triggered Myo5 binding to Vrp1, extended the myosin-I lifespan at endocytic sites and activated Myo5-induced actin polymerization.Item Open Access In vivo dynamics of clathrin and its adaptor-dependent recruitment to the actin-based endocytic machinery in yeast.(Developmental cell, 2005-07) Newpher, Thomas M; Smith, Robin P; Lemmon, Vance; Lemmon, Sandra KClathrin-mediated transport is a major pathway for endocytosis. However, in yeast, where cortical actin patches are essential for endocytosis, plasma membrane-associated clathrin has never been observed. Using live cell imaging, we demonstrate cortical clathrin in association with the actin-based endocytic machinery in yeast. Fluorescently tagged clathrin is found in highly mobile internal trans-Golgi/endosomal structures and in smaller cortical patches. Total internal reflection fluorescence microscopy showed that cortical patches are likely endocytic sites, as clathrin is recruited prior to a burst of intensity of the actin patch/endocytic marker, Abp1. Clathrin also accumulates at the cortex with internalizing alpha factor receptor, Ste2p. Cortical clathrin localizes with epsins Ent1/2p and AP180s, and its recruitment to the surface is dependent upon these adaptors. In contrast, Sla2p, End3p, Pan1p, and a dynamic actin cytoskeleton are not required for clathrin assembly or exchange but are required for the mobility, maturation, and/or turnover of clathrin-containing endocytic structures.Item Open Access Sex-Specific Effects of Progesterone on Early Outcome of Intracerebral Hemorrhage.(Neuroendocrinology, 2016-01) Hsieh, Justin T; Lei, Beilei; Sheng, Huaxin; Venkatraman, Talagnair; Lascola, Christopher D; Warner, David S; James, Michael LBackground
Preclinical evidence suggests that progesterone improves recovery after intracerebral hemorrhage (ICH); however, gonadal hormones have sex-specific effects. Therefore, an experimental model of ICH was used to assess recovery after progesterone administration in male and female rats.Methods
ICH was induced in male and female Wistar rats via stereotactic intrastriatal injection of clostridial collagenase (0.5 U). Animals were randomized to receive vehicle or 8 mg/kg progesterone intraperitoneally at 2 h, then subcutaneously at 5, 24, 48, and 72 h after injury. Outcomes included relevant physiology during the first 3 h, hemorrhage and edema evolution over the first 24 h, proinflammatory transcription factor and cytokine regulation at 24 h, rotarod latency and neuroseverity score over the first 7 days, and microglial activation/macrophage recruitment at 7 days after injury.Results
Rotarod latency (p = 0.001) and neuroseverity score (p = 0.01) were improved in progesterone-treated males, but worsened in progesterone-treated females (p = 0.028 and p = 0.008, respectively). Progesterone decreased cerebral edema (p = 0.04), microglial activation/macrophage recruitment (p < 0.001), and proinflammatory transcription factor phosphorylated nuclear factor-x03BA;B p65 expression (p = 0.0038) in males but not females, independent of tumor necrosis factor-α, interleukin-6, and toll-like receptor-4 expression. Cerebral perfusion was increased in progesterone-treated males at 4 h (p = 0.043) but not 24 h after injury. Hemorrhage volume, arterial blood gases, glucose, and systolic blood pressure were not affected.Conclusions
Progesterone administration improved early neurobehavioral recovery and decreased secondary neuroinflammation after ICH in male rats. Paradoxically, progesterone worsened neurobehavioral recovery and did not modify neuroinflammation in female rats. Future work should isolate mechanisms of sex-specific progesterone effects after ICH.