Browsing by Subject "Miocene"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Biogeography in deep time - What do phylogenetics, geology, and paleoclimate tell us about early platyrrhine evolution?(Mol Phylogenet Evol, 2015-01) Kay, Richard FrederickMolecular data have converged on a consensus about the genus-level phylogeny of extant platyrrhine monkeys, but for most extinct taxa and certainly for those older than the Pleistocene we must rely upon morphological evidence from fossils. This raises the question as to how well anatomical data mirror molecular phylogenies and how best to deal with discrepancies between the molecular and morphological data as we seek to extend our phylogenies to the placement of fossil taxa. Here I present parsimony-based phylogenetic analyses of extant and fossil platyrrhines based on an anatomical dataset of 399 dental characters and osteological features of the cranium and postcranium. I sample 16 extant taxa (one from each platyrrhine genus) and 20 extinct taxa of platyrrhines. The tree structure is constrained with a "molecular scaffold" of extant species as implemented in maximum parsimony using PAUP with the molecular-based 'backbone' approach. The data set encompasses most of the known extinct species of platyrrhines, ranging in age from latest Oligocene (∼26 Ma) to the Recent. The tree is rooted with extant catarrhines, and Late Eocene and Early Oligocene African anthropoids. Among the more interesting patterns to emerge are: (1) known early platyrrhines from the Late Oligocene through Early Miocene (26-16.5Ma) represent only stem platyrrhine taxa; (2) representatives of the three living platyrrhine families first occur between 15.7 Ma and 13.5 Ma; and (3) recently extinct primates from the Greater Antilles (Cuba, Jamaica, Hispaniola) are sister to the clade of extant platyrrhines and may have diverged in the Early Miocene. It is probable that the crown platyrrhine clade did not originate before about 20-24 Ma, a conclusion consistent with the phylogenetic analysis of fossil taxa presented here and with recent molecular clock estimates. The following biogeographic scenario is consistent with the phylogenetic findings and climatic and geologic evidence: Tropical South America has been a center for platyrrhine diversification since platyrrhines arrived on the continent in the middle Cenozoic. Platyrrhines dispersed from tropical South America to Patagonia at ∼25-24 Ma via a "Paraná Portal" through eastern South America across a retreating Paranense Sea. Phylogenetic bracketing suggests Antillean primates arrived via a sweepstakes route or island chain from northern South America in the Early Miocene, not via a proposed land bridge or island chain (GAARlandia) in the Early Oligocene (∼34 Ma). Patagonian and Antillean platyrrhines went extinct without leaving living descendants, the former at the end of the Early Miocene and the latter within the past six thousand years. Molecular evidence suggests crown platyrrhines arrived in Central America by crossing an intermittent connection through the Isthmus of Panama at or after 3.5Ma. Any more ancient Central American primates, should they be discovered, are unlikely to have given rise to the extant Central American taxa in situ.Item Open Access Tooth Root Size, Chewing Muscle Leverage, and the Biology of Homunculus patagonicus (Primates) from the Late Early Miocene of Patagonia(Ameghiniana, 2010-09) Perry, JMG; Kay, RF; Vizcaíno, SF; Bargo, MSInferences about the diet of Miocene platyrrhine monkeys have relied upon the morphology of the molar teeth, specifically the crests on the molars. Using a library of Micro-CT images of a broad comparative sample of living platyrrhines (callitrichines, cebines, pitheciids and atelids), late early Miocene Homunculus, and the early Miocene Tremacebus and Dolichocebus, we extend these inferences by examining the surface areas of the tooth roots, anchor points for the periodontal ligaments. From muscle scars on the skull, we estimate the mechanical leverage of the chewing muscles at bite points from the canine to the last molar. Extant platyrrhines that gouge bark to obtain exudates do not have especially large canine roots or anterior premolar roots compared with their less specialized close relatives. Extant platyrrhines that have more folivorous diets have much larger molar roots than do similar-sized more frugivorous species. Homunculus patagonicus has large postcanine roots relative to body size and poor masticatory leverage compared to the extant platyrrhines in our sample. The large postcanine roots, heavy tooth wear, and moderately-long shearing crests suggests a diet of abrasive, resistant foods. However, relatively poor jaw adductor leverage would have put the masticatory apparatus of Homunculus at a mechanical disadvantage for producing high bite forces compared to the condition in extant platyrrhines. Tremacebus and Dolichocebus, like Homunculus, have larger tooth root surfaces than comparable-sized living platyrrhines. They also resemble Homunculus in being more prognathic and having posteriorly-located temporalis origins - all features of a relatively poor leverage system. ©Asociación Paleontológica Argentina.