Browsing by Subject "Mitosis"
Results Per Page
Sort Options
Item Open Access A mitotic DNA damage response requiring FANCD2 enables mitosis with broken DNA(2017) Bretscher, HeidiIn order to maintain genome integrity cells employ a set of well conserved DNA damage checkpoints. DNA damage checkpoints are active during interphase and serve to prevent mitosis with broken DNA. Mitosis with broken DNA is associated with DNA segregation errors, genome instability and even cell death in resulting daughter cells. It has recently has been appreciated that cells can compensate for damaged DNA during mitosis. However, little is known about this mitotic DNA damage response.
In this work, I have utilized a genetically tractable system to study mitotic DNA damage responses in Drosophila. During development, Drosophila rectal papillar cells undergo developmentally programmed inactivation of DNA damage responses. Following inactivation, papillar cells undergo two rounds of mitosis. We find that papillar cells fail to undergo cell death or high-fidelity DNA repair prior to mitosis and instead enter mitosis with DNA double stranded breaks (DSBs). Remarkably, papillar cells segregate acentric DNA fragments into daughter cells during mitosis resulting in viable daughter cells, normal organ development and function. Proper segregation and organ formation is dependent on the FANCONI Anemia gene FANCD2. Loss of FANCD2 results in unaligned acentric fragments and mis-segregation of broken DNA resulting acentric micronuclei formation. Mis-segregation of acentric DNA results in cell death and failure to form a developmentally normal and functional organ. Thus, we have uncovered a role for FANCD2 in mitotic DNA damage responses.
Additionally, we find that single-stranded DNA (ssDNA) is present during papillar cell mitosis following DNA DSB induction. ssDNA is present on both the edge of segregating and lagging DNA as well as spanning short regions between fragments of lagging DNA. The observation that ssDNA is present suggests that while papillar cells do not initiate complete repair, some level of DNA resection must occur following DNA DSB induction. In line with this reasoning, we find a role for the DNA damage sensor complex, the MRN complex, in papillar cell survival following I-Cre induction. The MRN complex consists of three components, Mre11, Rad50 and NBS1. Loss of Mre11 or NBS1 results in reduced papillar cell survival following I-Cre induction. Furthermore, Mre11 is a nuclease. Thus, we propose that MRE11 acts at sites of DNA DSBs in papillar cells to create ssDNA. We hypothesize that formation of ssDNA is sufficient to form a DNA/protein bridge between segregating and lagging DNA to enable proper DNA segregation. Interestingly, resistance to DNA damage is also observed in many cancers. We speculate that such DNA damage resistant cancer cells may utilize similar mechanisms to compensate for DNA breaks during mitosis.
Item Open Access A Switch in p53 Dynamics Marks Cells That Escape from DSB-Induced Cell Cycle Arrest.(Cell reports, 2020-08) Tsabar, Michael; Mock, Caroline S; Venkatachalam, Veena; Reyes, Jose; Karhohs, Kyle W; Oliver, Trudy G; Regev, Aviv; Jambhekar, Ashwini; Lahav, GalitCellular responses to stimuli can evolve over time, resulting in distinct early and late phases in response to a single signal. DNA damage induces a complex response that is largely orchestrated by the transcription factor p53, whose dynamics influence whether a damaged cell will arrest and repair the damage or will initiate cell death. How p53 responses and cellular outcomes evolve in the presence of continuous DNA damage remains unknown. Here, we have found that a subset of cells switches from oscillating to sustained p53 dynamics several days after undergoing damage. The switch results from cell cycle progression in the presence of damaged DNA, which activates the caspase-2-PIDDosome, a complex that stabilizes p53 by inactivating its negative regulator MDM2. This work defines a molecular pathway that is activated if the canonical checkpoints fail to halt mitosis in the presence of damaged DNA.Item Open Access Across the meiotic divide - CSF activity in the post-Emi2/XErp1 era.(J Cell Sci, 2008-11-01) Wu, Judy Qiju; Kornbluth, SallyVertebrate eggs are arrested at the metaphase stage of meiosis II. Only upon fertilization will the metaphase-II-arrested eggs exit meiosis II and enter interphase. In 1971, Masui and Markert injected egg extracts into a two-cell-stage embryo and found that the injected blastomere arrested at the next mitosis. On the basis of these observations, they proposed the existence of an activity present in the eggs that is responsible for meiosis-II arrest and can induce mitotic arrest, and named this activity cytostatic factor (CSF). Although the existence of CSF was hypothesized more than 35 years ago, its precise identity remained unclear until recently. The discovery of the Mos-MAPK pathway and characterization of the anaphase-promoting complex/cyclosome (APC/C) as a central regulator of M-phase exit provided the framework for a molecular understanding of CSF. These pathways have now been linked by the discovery and characterization of the protein Emi2, a meiotic APC/C inhibitor, the activity and stability of which are controlled by the Mos-MAPK pathway. Continued investigation into the mechanism of action and mode of regulation of Emi2 promises to shed light not only on CSF function, but also on the general principles of APC/C regulation and the control of protein function by MAPK pathways.Item Open Access Cell-cycle control of cell polarity in yeast.(The Journal of cell biology, 2019-01) Moran, Kyle D; Kang, Hui; Araujo, Ana V; Zyla, Trevin R; Saito, Koji; Tsygankov, Denis; Lew, Daniel JIn many cells, morphogenetic events are coordinated with the cell cycle by cyclin-dependent kinases (CDKs). For example, many mammalian cells display extended morphologies during interphase but round up into more spherical shapes during mitosis (high CDK activity) and constrict a furrow during cytokinesis (low CDK activity). In the budding yeast Saccharomyces cerevisiae, bud formation reproducibly initiates near the G1/S transition and requires activation of CDKs at a point called "start" in G1. Previous work suggested that CDKs acted by controlling the ability of cells to polarize Cdc42, a conserved Rho-family GTPase that regulates cell polarity and the actin cytoskeleton in many systems. However, we report that yeast daughter cells can polarize Cdc42 before CDK activation at start. This polarization operates via a positive feedback loop mediated by the Cdc42 effector Ste20. We further identify a major and novel locus of CDK action downstream of Cdc42 polarization, affecting the ability of several other Cdc42 effectors to localize to the polarity site.Item Open Access CoA synthase regulates mitotic fidelity via CBP-mediated acetylation.(Nature communications, 2018-03-12) Lin, Chao-Chieh; Kitagawa, Mayumi; Tang, Xiaohu; Hou, Ming-Hsin; Wu, Jianli; Qu, Dan Chen; Srinivas, Vinayaka; Liu, Xiaojing; Thompson, J Will; Mathey-Prevot, Bernard; Yao, Tso-Pang; Lee, Sang Hyun; Chi, Jen-TsanThe temporal activation of kinases and timely ubiquitin-mediated degradation is central to faithful mitosis. Here we present evidence that acetylation controlled by Coenzyme A synthase (COASY) and acetyltransferase CBP constitutes a novel mechanism that ensures faithful mitosis. We found that COASY knockdown triggers prolonged mitosis and multinucleation. Acetylome analysis reveals that COASY inactivation leads to hyper-acetylation of proteins associated with mitosis, including CBP and an Aurora A kinase activator, TPX2. During early mitosis, a transient CBP-mediated TPX2 acetylation is associated with TPX2 accumulation and Aurora A activation. The recruitment of COASY inhibits CBP-mediated TPX2 acetylation, promoting TPX2 degradation for mitotic exit. Consistently, we detected a stage-specific COASY-CBP-TPX2 association during mitosis. Remarkably, pharmacological and genetic inactivation of CBP effectively rescued the mitotic defects caused by COASY knockdown. Together, our findings uncover a novel mitotic regulation wherein COASY and CBP coordinate an acetylation network to enforce productive mitosis.Item Open Access Effects of prolonged mitosis on neural stem cells in vivo during development(2020) Mitchell-Dick, Aaron MMicrocephaly patients are born with a brain size >3 standard deviations below normal and have mild to severe cognitive deficits. 12 microcephaly-linked genes identified in human genetics studies encode microtubule/centrosome-associated proteins and mutations in these genes are strongly tied to disrupted mitotic processes in neural stem cells during cortical development. Yet, how perturbed neural stem cell mitosis kinetics affects cell fate following neural stem cell division is not well understood. Our lab recently discovered prolonging mitosis of mouse neural progenitors, either ex vivo or in vitro, alters fate decisions forcing early increased neurogenic divisions at the expense of maintaining the stem cell pool. Yet, the consequences of prolonged mitosis in vivo, and directly in human stem cells, remain unexplored. Additionally, how prolonged mitosis mechanistically affects cell stress response and cell fate decisions during development is not well-studied.
Through in vivo pharmacological approaches, and in vitro culture of human neural progenitors, I provide evidence that prolonged mitosis in vivo directly alters cell fate, and that this consequence of prolonged mitosis is conserved from mice to humans. I find prolonged mitosis of neural stem cells in vivo results in increased phosphorylation of H2AX in mitosis, and increased pATR in a subset of newborn cells. P53 is then activated in a subset of daughter cells and upregulates downstream target genes. Within approximately the first cell cycle, prolonged mitosis results in an increase in neurogenic fates in the daughter cell population at the expense of progenitor renewal. Conditional loss of P53 rescues these effects on cell fate, while loss of BAX does not. Additionally, I find that time to cell death occurs on a log-normal distribution within the population. These experiments suggest that identifying the factors sensitive to prolonged prometaphase/mitosis arrest that transduce P53 activating signals is critical for our understanding of microcephaly etiologies. Together, data presented in this thesis suggest prolonged mitosis directly alters cell fate in vivo during cortical development and in human neural stem cells, that response to prolonged mitosis is relatively specific, involving P53 signaling, and that prolonged mitosis is a main contributing factor to microcephaly as a result of mitotic gene disruption.
Item Open Access Inhibition of the anaphase-promoting complex by the Xnf7 ubiquitin ligase.(J Cell Biol, 2005-04-11) Casaletto, Jessica B; Nutt, Leta K; Wu, Qiju; Moore, Jonathan D; Etkin, Laurence D; Jackson, Peter K; Hunt, Tim; Kornbluth, SallyDegradation of specific protein substrates by the anaphase-promoting complex/cyclosome (APC) is critical for mitotic exit. We have identified the protein Xenopus nuclear factor 7 (Xnf7) as a novel APC inhibitor able to regulate the timing of exit from mitosis. Immunodepletion of Xnf7 from Xenopus laevis egg extracts accelerated the degradation of APC substrates cyclin B1, cyclin B2, and securin upon release from cytostatic factor arrest, whereas excess Xnf7 inhibited APC activity. Interestingly, Xnf7 exhibited intrinsic ubiquitin ligase activity, and this activity was required for APC inhibition. Unlike other reported APC inhibitors, Xnf7 did not associate with Cdc20, but rather bound directly to core subunits of the APC. Furthermore, Xnf7 was required for spindle assembly checkpoint function in egg extracts. These data suggest that Xnf7 is an APC inhibitor able to link spindle status to the APC through direct association with APC core components.Item Open Access Kinesins at a glance.(J Cell Sci, 2010-10-15) Endow, Sharyn A; Kull, F Jon; Liu, HongleiItem Open Access Regulation of Chromosome Structure During Both of the Endocycle and Mitosis is Critical for Accurate Chromosome Segregation in Polypoid Mitosis(2017) Stormo, BenjaminPolyploid cells are generated through a cell cycle variant termed the endocycle. Endocycling cells undergo multiple rounds of genome duplication without an intervening mitosis. Endocycling is known to lead to alterations in chromosomes structure that make mitosis “ill advised”, in the words of one review. However, many polyploid cells retain mitotic capacity, both when polyploidy is induced pathologically, and in some developmental contexts. Using two mitotic polyploid cell types in Drosophila melanogaster, I investigated how chromosomes structure is regulated in pathological and developmental endocycles. By combining genetics, live imaging and chromosome cytology I have discovered two phases of chromosome regulation that, together, ensure accurate mitosis in polyploid cells. The first of these occurs during the endocycle when removal of sister chromatid cohesin by pds5, without mitosis, allows for the formation of paired chromatids. We named this process “cohesin disestablishment”. Secondly, during cell division, mad2 controls the length of mitosis which allows time for sister chromatids to separate into pairs. We named this process “Separation Into Recent Sisters” (SIRS). Together, cohesin disestablishment and SIRS, allow the accurate segregation of chromosomes in polyploid mitotic cells.
Item Open Access Regulation of the DNA Damage Response and Spindle Checkpoint Signaling Pathways(2015) Foss, KristenThe ultimate goal of any living cell is to pass on a complete, unaltered copy of its DNA to its daughter cell. The DNA damage response (DDR) and spindle checkpoint are two essential signaling pathways that make it possible for a cell to achieve this goal. The DDR protects genetic integrity by sensing errors in the DNA sequence and activating signaling pathways to arrest the cell cycle and repair the DNA. The spindle checkpoint protects chromosomal integrity by preventing the separation of chromosomes during mitosis until all chromosomes are correctly attached to the mitotic spindle. Proper regulation of both the DDR and the spindle checkpoint is critical for cell survival. In this dissertation I will describe our discovery of novel regulatory mechanisms involved in each of these signaling networks.
In the first research chapter of this dissertation, we describe our findings concerning how the DDR regulates cyclin F levels. Cyclin F is an F-box protein that associates with the SCF E3 ubiquitin ligase complex to target proteins for degradation. In response to DNA damage, cyclin F levels are downregulated to facilitate increased dNTP production for efficient DNA repair, but the molecular mechanisms regulating this downregulation of cyclin F are largely unknown. We discovered that cyclin F downregulation by the DDR is the combined result of increased protein degradation and decreased mRNA expression. At the level of protein regulation, cyclin F is targeted for proteasomal degradation by the SCF complex. Interestingly, we found that the half-life of cyclin F protein is significantly increased in cells treated with the phosphatase inhibitor calyculin A, which caused cyclin F to be hyper-phosphorylated. Calyculin A also partially prevented cyclin F downregulation following DNA damage. This result suggests that cyclin F phosphorylation stabilizes the protein, and dephosphorylation of cyclin F may be required for its degradation in both unperturbed and DNA damaged cells. We also found that cyclin F downregulation is dependent on the Chk1 kinase, which is predominately activated by the ATR kinase. In examining the mechanism by which Chk1 promotes cyclin F downregulation, we determined that Chk1 represses cyclin F transcription. Lastly, we investigated the role of cyclin F in cell cycle regulation and discovered that both increased and decreased cyclin F expression delay mitotic entry, indicating that an optimal level of cyclin F expression is critical for proper cell cycle progression.
The second research chapter of this dissertation details our discovery of the requirement for phosphatase activity to inhibit the APC/C E3 ubiquitin ligase during the spindle checkpoint. Early in mitosis, the mitotic checkpoint complex (MCC) inactivates the APC/C until the chromosomes are properly aligned and attached to the mitotic spindle at metaphase. Once all the chromosomes are properly attached to the spindle, the MCC dissociates, and the APC/C targets cyclin B and securin for degradation so that the cell progresses into anaphase. While phosphorylation is known to drive many of the events during the checkpoint, the precise molecular mechanisms regulating spindle checkpoint maintenance and inactivation are still poorly understood. In our studies, we sought to determine the role of mitotic phosphatases during the spindle checkpoint. To address this question, we treated spindle checkpoint-arrested cells with various phosphatase inhibitors and examined their effect on the MCC and APC/C activation. Using this approach we found that two phosphatase inhibitors, calyculin A and okadaic acid (1 µM), caused MCC dissociation and APC/C activation in spindle checkpoint-arrested cells. Although the cells were able to degrade cyclin B, they did not exit mitosis as evidenced by high levels of Cdk1 substrate phosphorylation and chromosome condensation. Our results provide the first evidence that phosphatases are essential for maintenance of the MCC during operation of the spindle checkpoint.
Item Open Access The Discovery of EJC Independent Roles for EIF4A3 in Mitosis, Microtubules, and Neural Crest Development(2017) Miller, Emily ElizabethThe exon junction complex (EJC) is comprised of three core components: MAGOH, RBM8A, and EIF4A3. The EJC is canonically known to regulate many aspects of RNA metabolism as well as function in mitosis. Previous work on the EJC has primarily focused on functions for the EJC as a complex, and thus independent roles for EJC components are lacking. It was also recently discovered that EIF4A3 is the causative gene in Richieri-Costa-Pereira Syndrome (RCPS), a craniofacial disease primarily characterized by a severely undersized mandible.
We used two systems to examine EIF4A3 function. First, HeLa cells allowed for dissection of EJC complex requirements. We depleted EIF4A3, MAGOH, or RBM8A and saw that MAGOH and RBM8A protein levels are interdependent, while EIF4A3 levels are independent. We next used point mutant constructs that disrupt EJC core formation to assay EJC complex requirements during mitosis. Constructs that disrupt MAGOH-RBM8A from interacting with EIF4A3 were able to rescue prometaphase arrest, suggesting they may regulate mitosis independently. Further, localization studies show that during mitosis MAGOH and RBM8A localize pericentrosomally whereas EIF4A3 is more expanded across microtubules. Biochemistry studies reveal that EIF4A3 is able to bind to microtubules in the absence of other EJC components or RNA. We also found that overexpression of EIF4A3 results in telophase arrest, suggesting that EIF4A3 dosage is important throughout mitosis.
We next used mouse models to examine the developmental requirements of Eif4a3 both ubiquitously and in the neural crest. We show that heterozygous loss of Eif4a3 at early embryonic ages results in disrupted mandibular arch fusion. These defects later manifest as severe craniofacial abnormalities and loss of adult mandibular structures. Examination of the skeletons of these embryos shows premature ossification of the clavicle. Parallel studies in patient-derived iPSCs show that neural crest cells are less able to migrate and when pushed down an osteogenic lineage, they prematurely differentiate into bone. The craniofacial phenotypes seen in Eif4a3 mutant mice are also distinct from other EJC mutants.
From these data we conclude that EIF4A3 has EJC-independent functions in mitosis, microtubule interaction, and neural crest development. Future studies that disentangle EJC-dependent and independent functions will allow for a more thorough understanding of how these proteins work at the molecular level and in human disease.
Item Embargo The Exon-junction Complex Component EIF4A3 is Essential for Mouse and Human Cortical Progenitor Mitosis and Neurogenesis(2023) Lupan, Bianca MarieMutations in components of the exon junction complex (EJC) are associated with neurodevelopment and disease. In particular, reduced levels of the RNA helicase EIF4A3 cause Richieri-Costa-Pereira Syndrome (RCPS) and CNVs are linked to intellectual disability. Consistent with this, Eif4a3 haploinsufficient mice are microcephalic. Altogether, this implicates EIF4A3 in cortical development; however, the underlying mechanisms are poorly understood. Here, we use mouse and human models to demonstrate that EIF4A3 promotes cortical development by controlling progenitor mitosis, cell fate, and survival. Eif4a3 haploinsufficiency in mice causes extensive cell death and impairs neurogenesis. Using Eif4a3;p53 compound mice, we show that apoptosis is most impactful for early neurogenesis, while additional p53-independent mechanisms contribute to later stages. Live imaging of mouse and human neural progenitors reveals Eif4a3 controls mitosis length, which influences progeny fate and viability. These phenotypes are conserved as cortical organoids derived from RCPS iPSCs exhibit aberrant neurogenesis. Finally, using rescue experiments we show that EIF4A3 controls neuron generation via the EJC. Altogether, our study demonstrates that EIF4A3 mediates neurogenesis by controlling mitosis duration and cell survival, implicating new mechanisms underlying EJC-mediated disorders.Next, we focus on the function of EIF4A3 in neurons. We unexpectedly discovered that that Eif4a3 – but not Magoh or Rbm8a – is required for neuronal maturation and development of the axonal tract using genetic mouse models. Here we use neuronal cultures, super resolution imaging, and biochemical assays and show that EIF4A3 controls neurite outgrowth in an EJC-independent manner and binds directly to microtubules. Additionally, we perform quantitative proteomics to ask whether other interactors of EIF4A3 vary across progenitors and neurons in the developing brain, finding an enrichment of cell cycle regulators during early neurogenesis and cytoskeletal regulators in later neurogenesis. Altogether, these data argue that EIF4A3 has cell-type specific functions and controls brain development through multiple mechanisms.