Browsing by Subject "Mobile computing"
Results Per Page
Sort Options
Item Open Access Building Blocks for Tomorrow's Mobile App Store(2012) Manweiler, Justin GregoryIn our homes and in the enterprise, in our leisure and in our professions, mobile computing is no longer merely "exciting;" it is becoming an essential, ubiquitous tool of the modern world. New and innovative mobile applications continue to inform, entertain, and surprise users. But, to make the daily use of mobile technologies more gratifying and worthwhile, we must move forward with new levels of sophistication. The Mobile App Stores of the future must be built on stronger foundations.
This dissertation considers a broad view of the challenges and intuitions behind a diverse selection of such new primitives. Some of these primitives will mitigate existing and fundamental challenges of mobile computing, especially relating to wireless communication. Others will take an application-driven approach, being designed to serve a novel purpose, and be adapted to the unique and varied challenges from their disparate domains. However, all are related through a unifying goal, to provide a seamless, enjoyable, and productive mobile experience. This dissertation takes view that by bringing together nontrivial enhancements across a selection of disparate-but-interrelated domains, the impact is synergistically stronger than the sum of each in isolation. Through their collective impact, these new "building blocks" can help lay a foundation to upgrade mobile technology beyond the expectations of early-adopters, and into seamless integration with all of our lives.
Item Open Access Enhanced Password Security on Mobile Devices(2013) Liu, DongtaoSleek and powerful touchscreen devices with continuous access to high-bandwidth wireless data networks have transformed mobile into a first-class development platform. Many applications (i.e., "apps") written for these platforms rely on remote services such as Dropbox, Facebook, and Twitter, and require users to provide one or more passwords upon installation. Unfortunately, today's mobile platforms provide no protection for users' passwords, even as mobile devices have become attractive targets for password-stealing malware and other phishing attacks.
This dissertation explores the feasibility of providing strong protections for passwords input on mobile devices without requiring large changes to existing apps.
We propose two approaches to secure password entry on mobile devices: ScreenPass and VeriUI. ScreenPass is integrated with a device's operating system and continuously monitors the device's screen to prevent malicious apps from spoofing the system's trusted software keyboard. The trusted keyboard ensures that ScreenPass always knows when a password is input, which allows it to prevent apps from sending password data to the untrusted servers. VeriUI relies on trusted hardware to isolate password handling from a device's operating system and apps. This approach allows VeriUI to prove to remote services that a relatively small and well-known code base directly handled a user's password data.
Item Open Access Towards Energy-Efficient Mobile Sensing: Architectures and Frameworks for Heterogeneous Sensing and Computing(2016) Fan, SongchunModern sensing apps require continuous and intense computation on data streams. Unfortunately, mobile devices are failing to keep pace despite advances in hardware capability. In contrast to powerful system-on-chips that rapidly evolve, battery capacities merely grow. This hinders the potential of long-running, compute-intensive sensing services such as image/audio processing, motion tracking and health monitoring, especially on small, wearable devices.
In this thesis, we present three pieces of work that target at improving the energy efficiency for mobile sensing. (1) In the first work, we study heterogeneous mobile processors that dynamically switch between high-performance and low-power cores according to tasks' performance requirements. We benchmark interactive mobile workloads and quantify the energy improvement of different microarchitectures. (2) Realizing that today's users often carry more than one mobile devices, in the second work, we extend the resource boundary of individual devices by prototyping a distributed framework that coordinates multiple devices. When devices share common sensing goals, the framework schedules sensing and computing tasks according to devices' heterogeneity, improving the performance and latency for compute-intensive sensing apps. (3) In the third work, we study the power breakdown of motion sensing apps on wearable devices and show that traditional offloading schemes cannot mitigate sensing’s high energy costs. We design a framework that allows the phone to take over sensing and computation by predicting the wearable's sensory data, when motions of the two devices are highly correlated. This allows the wearable to offload without communicating raw sensing data, resulting in little performance loss but significant energy savings.