Browsing by Subject "Modelling"
- Results Per Page
- Sort Options
Item Open Access Fine-Scale Foraging Behavior of Humpback Whales Megaptera novaeangliae in the Near-Shore Waters of the Western Antarctic Peninsula(2014) Tyson, Reny BlueHigh-resolution bio-logging tools were used to examine the fine-scale foraging behaviors of humpback whales (Megaptera novaeangliae) in the coastal waters of the Western Antarctic Peninsula during the austral autumn of 2009 and 2010. Discrete feeding events (i.e., lunges) were inferred from the biologging records of thirteen whales, including a mother and her calf. In general, humpback whales exhibited efficient foraging behaviors that allowed them to maximize energetic gains and minimize energetic costs as predicted by optimal foraging theory. They fed at a continuous and high rate in the upper portion of the water column (< 100 m) from approximately dusk to dawn when their prey (Antarctic krill, Euphausia superba) were most vulnerable and less costly to acquire (i.e., near the surface). When forced to dive to greater depths, they adjusted their behaviors (e.g., descent and ascent rates) so that they could maximize their foraging durations and increase their lunging rates. In addition, humpbacks appeared to accept short term (i.e., dive by dive) costs associated with depleted oxygen stores in favor of maximizing long term (i.e., daily) energetic gains. Such efficient behaviors are particularly beneficial for mother-calf pairs who have additional energetic costs associated with foraging, such as lactation (mother), growth (calf), and maintaining proximity. In addition, because the physiology of humpback whales is poorly understood yet critically important for predicting their behaviors in response to fluctuations in their environmental conditions, foraging behaviors inferred from the bio-logging records were used to estimate their metabolic rates, oxygen storage capacities, and oxygen replenishment rates under the framework of optimal foraging theory. This research suggests that the current techniques used to estimate humpback whale oxygen stores is appropriate but that the estimation of metabolic rates of humpbacks while foraging and while traveling need to be addressed further. This work aims to increase the current understanding of humpback whale foraging behaviors along the Western Antarctic Peninsula so that appropriate measures can be taken to aid in their recovery and in the sustainability of the Antarctic marine ecosystem.
Item Open Access Modelling Heat Transfer and Pathogen Disinfection in a Biogas-Powered Self-Sanitizing Toilet(2014) Ouksel, LilyaThe problem of inadequate sanitation in less developed countries has dire health consequences such as diarrheal diseases. A household-scale sanitation system consisting of an anaerobic digester, heat exchanger, and biogas-powered heater, was developed to provide a simple, potentially low cost and low carbon-footprint solution to this problem. A conceptual model was developed to predict the effectiveness of the heat sterilization system in reaching the appropriate temperatures to significantly inactivate pathogens such as E. coli, helminthe ova, and viruses. Lab experiments with a stainless steel heater and exchanger were used to establish model parameters and to verify the model. Though the model sometimes predicts higher or lower values than the experimental data, probably due to uncertainties in pathogen decay constants and in the different heat transfer coefficients, the model adequately predicts temperature across the heat exchanger and heater, and can provide a preliminary estimate of pathogen inactivation within the system. Both disinfection experiments showed the system reduces E. coli concentrations to below the WHO limit, which was predicted by the model.