Browsing by Subject "Molecular Diagnostic Techniques"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Open Access Development of a TaqMan Array Card for Acute-Febrile-Illness Outbreak Investigation and Surveillance of Emerging Pathogens, Including Ebola Virus.(J Clin Microbiol, 2016-01) Liu, Jie; Ochieng, Caroline; Wiersma, Steve; Ströher, Ute; Towner, Jonathan S; Whitmer, Shannon; Nichol, Stuart T; Moore, Christopher C; Kersh, Gilbert J; Kato, Cecilia; Sexton, Christopher; Petersen, Jeannine; Massung, Robert; Hercik, Christine; Crump, John A; Kibiki, Gibson; Maro, Athanasia; Mujaga, Buliga; Gratz, Jean; Jacob, Shevin T; Banura, Patrick; Scheld, W Michael; Juma, Bonventure; Onyango, Clayton O; Montgomery, Joel M; Houpt, Eric; Fields, BarryAcute febrile illness (AFI) is associated with substantial morbidity and mortality worldwide, yet an etiologic agent is often not identified. Convalescent-phase serology is impractical, blood culture is slow, and many pathogens are fastidious or impossible to cultivate. We developed a real-time PCR-based TaqMan array card (TAC) that can test six to eight samples within 2.5 h from sample to results and can simultaneously detect 26 AFI-associated organisms, including 15 viruses (chikungunya, Crimean-Congo hemorrhagic fever [CCHF] virus, dengue, Ebola virus, Bundibugyo virus, Sudan virus, hantaviruses [Hantaan and Seoul], hepatitis E, Marburg, Nipah virus, o'nyong-nyong virus, Rift Valley fever virus, West Nile virus, and yellow fever virus), 8 bacteria (Bartonella spp., Brucella spp., Coxiella burnetii, Leptospira spp., Rickettsia spp., Salmonella enterica and Salmonella enterica serovar Typhi, and Yersinia pestis), and 3 protozoa (Leishmania spp., Plasmodium spp., and Trypanosoma brucei). Two extrinsic controls (phocine herpesvirus 1 and bacteriophage MS2) were included to ensure extraction and amplification efficiency. Analytical validation was performed on spiked specimens for linearity, intra-assay precision, interassay precision, limit of detection, and specificity. The performance of the card on clinical specimens was evaluated with 1,050 blood samples by comparison to the individual real-time PCR assays, and the TAC exhibited an overall 88% (278/315; 95% confidence interval [CI], 84% to 92%) sensitivity and a 99% (5,261/5,326, 98% to 99%) specificity. This TaqMan array card can be used in field settings as a rapid screen for outbreak investigation or for the surveillance of pathogens, including Ebola virus.Item Open Access Microfluidic platform versus conventional real-time polymerase chain reaction for the detection of Mycoplasma pneumoniae in respiratory specimens.(Diagn Microbiol Infect Dis, 2010-05) Wulff-Burchfield, Elizabeth; Schell, Wiley A; Eckhardt, Allen E; Pollack, Michael G; Hua, Zhishan; Rouse, Jeremy L; Pamula, Vamsee K; Srinivasan, Vijay; Benton, Jonathan L; Alexander, Barbara D; Wilfret, David A; Kraft, Monica; Cairns, Charles B; Perfect, John R; Mitchell, Thomas GRapid, accurate diagnosis of community-acquired pneumonia (CAP) due to Mycoplasma pneumoniae is compromised by low sensitivity of culture and serology. Polymerase chain reaction (PCR) has emerged as a sensitive method to detect M. pneumoniae DNA in clinical specimens. However, conventional real-time PCR is not cost-effective for routine or outpatient implementation. Here, we evaluate a novel microfluidic real-time PCR platform (Advanced Liquid Logic, Research Triangle Park, NC) that is rapid, portable, and fully automated. We enrolled patients with CAP and extracted DNA from nasopharyngeal wash (NPW) specimens using a biotinylated capture probe and streptavidin-coupled magnetic beads. Each extract was tested for M. pneumoniae-specific DNA by real-time PCR on both conventional and microfluidic platforms using Taqman probe and primers. Three of 59 (5.0%) NPWs were positive, and agreement between the methods was 98%. The microfluidic platform was equally sensitive but 3 times faster and offers an inexpensive and convenient diagnostic test for microbial DNA.Item Open Access Molecular genetic testing and the future of clinical genomics.(Nature reviews. Genetics, 2013-06) Katsanis, Sara Huston; Katsanis, NicholasGenomic technologies are reaching the point of being able to detect genetic variation in patients at high accuracy and reduced cost, offering the promise of fundamentally altering medicine. Still, although scientists and policy advisers grapple with how to interpret and how to handle the onslaught and ambiguity of genome-wide data, established and well-validated molecular technologies continue to have an important role, especially in regions of the world that have more limited access to next-generation sequencing capabilities. Here we review the range of methods currently available in a clinical setting as well as emerging approaches in clinical molecular diagnostics. In parallel, we outline implementation challenges that will be necessary to address to ensure the future of genetic medicine.Item Open Access Systematic review of the performance of HIV viral load technologies on plasma samples.(PLoS One, 2014) Sollis, Kimberly A; Smit, Pieter W; Fiscus, Susan; Ford, Nathan; Vitoria, Marco; Essajee, Shaffiq; Barnett, David; Cheng, Ben; Crowe, Suzanne M; Denny, Thomas; Landay, Alan; Stevens, Wendy; Habiyambere, Vincent; Perrins, Jos; Peeling, Rosanna WBACKGROUND: Viral load (VL) monitoring is the standard of care in developing country settings for detecting HIV treatment failure. Since 2010 the World Health Organization has recommended a phase-in approach to VL monitoring in resource-limited settings. We conducted a systematic review of the accuracy and precision of HIV VL technologies for treatment monitoring. METHODS AND FINDINGS: A search of Medline and Embase was conducted for studies evaluating the accuracy or reproducibility of commercially available HIV VL assays. 37 studies were included for review including evaluations of the Amplicor Monitor HIV-1 v1.5 (n = 25), Cobas TaqMan v2.0 (n = 11), Abbott RealTime HIV-1 (n = 23), Versant HIV-1 RNA bDNA 3.0 (n = 15), Versant HIV-1 RNA kPCR 1.0 (n = 2), ExaVir Load v3 (n = 2), and NucliSens EasyQ v2.0 (n = 1). All currently available HIV VL assays are of sufficient sensitivity to detect plasma virus levels at a lower detection limit of 1,000 copies/mL. Bias data comparing the Abbott RealTime HIV-1, TaqMan v2.0 to the Amplicor Monitor v1.5 showed a tendency of the Abbott RealTime HIV-1 to under-estimate results while the TaqMan v2.0 overestimated VL counts. Compared to the Amplicor Monitor v1.5, 2-26% and 9-70% of results from the Versant bDNA 3.0 and Abbott RealTime HIV-1 differed by greater than 0.5log10. The average intra and inter-assay variation of the Abbott RealTime HIV-1 were 2.95% (range 2.0-5.1%) and 5.44% (range 1.17-30.00%) across the range of VL counts (2log10-7log10). CONCLUSIONS: This review found that all currently available HIV VL assays are of sufficient sensitivity to detect plasma VL of 1,000 copies/mL as a threshold to initiate investigations of treatment adherence or possible treatment failure. Sources of variability between VL assays include differences in technology platform, plasma input volume, and ability to detect HIV-1 subtypes. Monitoring of individual patients should be performed on the same technology platform to ensure appropriate interpretation of changes in VL. Prospero registration # CD42013003603.Item Open Access The host response as a tool for infectious disease diagnosis and management.(Expert review of molecular diagnostics, 2018-08) Lydon, Emily C; Ko, Emily R; Tsalik, Ephraim LINTRODUCTION:A century of advances in infectious disease diagnosis and treatment changed the face of medicine. However, challenges continue to develop including multi-drug resistance, globalization that increases pandemic risks, and high mortality from severe infections. These challenges can be mitigated through improved diagnostics, and over the past decade, there has been a particular focus on the host response. Since this article was originally published in 2015, there have been significant developments in the field of host response diagnostics, warranting this updated review. Areas Covered: This review begins by discussing developments in single biomarkers and pauci-analyte biomarker panels. It then delves into 'omics, an area where there has been truly exciting progress. Specifically, progress has been made in sepsis diagnosis and prognosis; differentiating viral, bacterial, and fungal pathogen classes; pre-symptomatic diagnosis; and understanding disease-specific diagnostic challenges in tuberculosis, Lyme disease, and Ebola. Expert Commentary: As 'omics have become faster, more precise, and less expensive, the door has been opened for academic, industry, and government efforts to develop host-based infectious disease classifiers. While there are still obstacles to overcome, the chasm separating these scientific advances from the patient's bedside is shrinking.