Browsing by Subject "Molecular Docking Simulation"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Open Access A DNA mimic: the structure and mechanism of action for the anti-repressor protein AbbA.(Journal of molecular biology, 2014-05) Tucker, Ashley T; Bobay, Benjamin G; Banse, Allison V; Olson, Andrew L; Soderblom, Erik J; Moseley, M Arthur; Thompson, Richele J; Varney, Kristen M; Losick, Richard; Cavanagh, JohnBacteria respond to adverse environmental conditions by switching on the expression of large numbers of genes that enable them to adapt to unfavorable circumstances. In Bacillus subtilis, many adaptive genes are under the negative control of the global transition state regulator, the repressor protein AbrB. Stressful conditions lead to the de-repression of genes under AbrB control. Contributing to this de-repression is AbbA, an anti-repressor that binds to and blocks AbrB from binding to DNA. Here, we have determined the NMR structure of the functional AbbA dimer, confirmed that it binds to the N-terminal DNA-binding domain of AbrB, and have provided an initial description for the interaction using computational docking procedures. Interestingly, we show that AbbA has structural and surface characteristics that closely mimic the DNA phosphate backbone, enabling it to readily carry out its physiological function.Item Open Access An Evolutionary Insertion in the Mxra8 Receptor-Binding Site Confers Resistance to Alphavirus Infection and Pathogenesis.(Cell host & microbe, 2020-03) Kim, Arthur S; Zimmerman, Ofer; Fox, Julie M; Nelson, Christopher A; Basore, Katherine; Zhang, Rong; Durnell, Lorellin; Desai, Chandni; Bullock, Christopher; Deem, Sharon L; Oppenheimer, Jonas; Shapiro, Beth; Wang, Ting; Cherry, Sara; Coyne, Carolyn B; Handley, Scott A; Landis, Michael J; Fremont, Daved H; Diamond, Michael SAlphaviruses are emerging, mosquito-transmitted RNA viruses with poorly understood cellular tropism and species selectivity. Mxra8 is a receptor for multiple alphaviruses including chikungunya virus (CHIKV). We discovered that while expression of mouse, rat, chimpanzee, dog, horse, goat, sheep, and human Mxra8 enables alphavirus infection in cell culture, cattle Mxra8 does not. Cattle Mxra8 encodes a 15-amino acid insertion in its ectodomain that prevents Mxra8 binding to CHIKV. Identical insertions are present in zebu, yak, and the extinct auroch. As other Bovinae lineages contain related Mxra8 sequences, this insertion likely occurred at least 5 million years ago. Removing the Mxra8 insertion in Bovinae enhances alphavirus binding and infection, while introducing the insertion into mouse Mxra8 blocks CHIKV binding, prevents infection by multiple alphaviruses in cells, and mitigates CHIKV-induced pathogenesis in mice. Our studies on how this insertion provides resistance to CHIKV infection could facilitate countermeasures that disrupt Mxra8 interactions with alphaviruses.Item Open Access Anti-HIV Potential of Beesioside I Derivatives as Maturation Inhibitors: Synthesis, 3D-QSAR, Molecular Docking and Molecular Dynamics Simulations.(International journal of molecular sciences, 2023-01) Zhao, Zixuan; Ma, Yinghong; Li, Xiangyuan; Morris-Natschke, Susan L; Sun, Zhaocui; Sun, Zhonghao; Ma, Guoxu; Dong, Zhengqi; Zhao, Xiaohong; Yang, Meihua; Xu, Xudong; Lee, Kuohsiung; Wu, Haifeng; Chen, ChinhoHIV-1 maturation is the final step in the retroviral lifecycle that is regulated by the proteolytic cleavage of the Gag precursor protein. As a first-in-class HIV-1 maturation inhibitor (MI), bevirimat blocks virion maturation by disrupting capsid-spacer peptide 1 (CA-SP1) cleavage, which acts as the target of MIs. Previous alterations of beesioside I (1) produced (20S,24S)-15ꞵ,16ꞵ-diacetoxy-18,24; 20,24-diepoxy-9,19-cyclolanostane-3ꞵ,25-diol 3-O-3',3'-dimethylsuccinate (3, DSC), showing similar anti-HIV potency compared to bevirimat. To ascertain the binding modes of this derivative, further modification of compound 1 was conducted. Three-dimensional quantitative structure-activity relationship (3D-QSAR) analysis combined with docking simulations and molecular dynamics (MD) were conducted. Five new derivatives were synthesized, among which compound 3b showed significant activity against HIV-1NL4-3 with an EC50 value of 0.28 µM. The developed 3D-QSAR model resulted in great predictive ability with training set (r2 = 0.99, q2 = 0.55). Molecular docking studies were complementary to the 3D-QSAR analysis, showing that DSC was differently bound to CA-SP1 with higher affinity than that of bevirimat. MD studies revealed that the complex of the ligand and the protein was stable, with root mean square deviation (RMSD) values <2.5 Å. The above results provided valuable insights into the potential of DSC as a prototype to develop new antiviral agents.Item Open Access Structure and DNA-binding traits of the transition state regulator AbrB.(Structure (London, England : 1993), 2014-11) Olson, Andrew L; Tucker, Ashley T; Bobay, Benjamin G; Soderblom, Erik J; Moseley, M Arthur; Thompson, Richele J; Cavanagh, JohnThe AbrB protein from Bacillus subtilis is a DNA-binding global regulator controlling the onset of a vast array of protective functions under stressful conditions. Such functions include biofilm formation, antibiotic production, competence development, extracellular enzyme production, motility, and sporulation. AbrB orthologs are known in a variety of prokaryotic organisms, most notably in all infectious strains of Clostridia, Listeria, and Bacilli. Despite its central role in bacterial response and defense, its structure has been elusive because of its highly dynamic character. Orienting its N- and C-terminal domains with respect to one another has been especially problematic. Here, we have generated a structure of full-length, tetrameric AbrB using nuclear magnetic resonance, chemical crosslinking, and mass spectrometry. We note that AbrB possesses a strip of positive electrostatic potential encompassing its DNA-binding region and that its C-terminal domain aids in DNA binding.Item Open Access The Solution Structures and Interaction of SinR and SinI: Elucidating the Mechanism of Action of the Master Regulator Switch for Biofilm Formation in Bacillus subtilis.(Journal of molecular biology, 2020-01) Milton, Morgan E; Draughn, G Logan; Bobay, Benjamin G; Stowe, Sean D; Olson, Andrew L; Feldmann, Erik A; Thompson, Richele J; Myers, Katherine H; Santoro, Michael T; Kearns, Daniel B; Cavanagh, JohnBacteria have developed numerous protection strategies to ensure survival in harsh environments, with perhaps the most robust method being the formation of a protective biofilm. In biofilms, bacterial cells are embedded within a matrix that is composed of a complex mixture of polysaccharides, proteins, and DNA. The gram-positive bacterium Bacillus subtilis has become a model organism for studying regulatory networks directing biofilm formation. The phenotypic transition from a planktonic to biofilm state is regulated by the activity of the transcriptional repressor, SinR, and its inactivation by its primary antagonist, SinI. In this work, we present the first full-length structural model of tetrameric SinR using a hybrid approach combining high-resolution solution nuclear magnetic resonance (NMR), chemical cross-linking, mass spectrometry, and molecular docking. We also present the solution NMR structure of the antagonist SinI dimer and probe the mechanism behind the SinR-SinI interaction using a combination of biochemical and biophysical techniques. As a result of these findings, we propose that SinI utilizes a residue replacement mechanism to block SinR multimerization, resulting in diminished DNA binding and concomitant decreased repressor activity. Finally, we provide an evidence-based mechanism that confirms how disruption of the SinR tetramer by SinI regulates gene expression.Item Open Access Translating antibody-binding peptides into peptoid ligands with improved affinity and stability.(Journal of chromatography. A, 2019-09) Bordelon, Tee; Bobay, Benjamin; Murphy, Andrew; Reese, Hannah; Shanahan, Calvin; Odeh, Fuad; Broussard, Amanda; Kormos, Chad; Menegatti, StefanoA great number of protein-binding peptides are known and utilized as drugs, diagnostic reagents, and affinity ligands. Recently, however, peptide mimetics have been proposed as valuable alternative to peptides by virtue of their excellent biorecognition activity and higher biochemical stability. This poses the need to develop a strategy for translating known protein-binding peptides into peptoid analogues with comparable or better affinity. This work proposes a route for translation utilizing the IgG-binding peptide HWRGWV as reference sequence. An ensemble of peptoid analogues of HWRGWV were produced by adjusting the number and sequence arrangement of residues containing functional groups that resemble both natural and non-natural amino acids. The variants were initially screened via IgG binding tests in non-competitive mode to select candidate ligands. A set of selected peptoids were studied in silico by docking onto putative binding sites identified on the crystal structures of human IgG1, IgG2, IgG3, and IgG4 subclasses, returning values of predicted binding energy that aligned well with the binding data. Selected peptoids PL-16 and PL-22 were further characterized by binding isotherm analysis to determine maximum capacity (Qmax ˜ 48-57 mg of IgG per mL of adsorbent) and binding strength on solid phase (KD ˜ 5.4-7.8 10-7 M). Adsorbents PL-16-Workbeads and PL-22-Workbeads were used for purifying human IgG from a cell culture supernatant added with bovine serum, affording high values of IgG recovery (up to 85%) and purity (up to 98%) under optimized binding and elution conditions. Both peptoid ligands also proved to be stable against proteolytic enzymes and strong alkaline agents. Collectively, these studies form a method guiding the design of peptoid variants of cognate peptide ligands, and help addressing the challenges that, despite the structural similarity, the peptide-to-peptoid translation presents.