Browsing by Subject "Multivalency"
Results Per Page
Sort Options
Item Open Access Affinity-Modulation Drug Delivery Using Thermosensitive Elastin-Like Polypeptide Block Copolymers(2010) Simnick, Andrew JosephAntivascular targeting is a promising strategy for tumor therapy. This strategy overcomes many of the transport barriers and has shown efficacy in many preclinical models, but targeting epitopes on tumor vasculature can also promote accumulation in healthy tissues. We used Elastin-like Polypeptide (ELP) to form block copolymers (BCs) consisting of two separate ELP blocks seamlessly fused at the genetic level. ELPBCs self-assemble into spherical micelles at a critical micelle temperature (CMT), allowing external control over monovalent unimer and multivalent micelle forms. We hypothesized that thermal self-assembly could trigger specific binding of ligand-ELPBC to target receptors via the multivalency effect as a method to spatially restrict high-avidity interactions. We termed this approach Dynamic Affinity Modulation (DAM). The objectives of this study were to design, identify, and evaluate protein-based drug carriers that specifically bind to target receptors through static or dynamic multivalent ligand presentation.
ELPBCs were modified to include a low-affinity GRGDS or GNGRG ligand and a unique conjugation site for hydrophobic compounds. This addition did not disrupt micelle self-assembly and facilitated thermally-controlled multivalency. The ability of ligand-ELPBC to specifically interact with isolated AvB3 or CD13 was tested using an in vitro binding assay incorporating an engineered cell line. RGD-ELPBC promoted specific receptor binding in response to multivalent presentation but NGR-ELPBC did not. Enhanced binding with multivalent presentation was also observed only with constructs exhibiting CMT < body temperature. This study establishes proof-of-principle of DAM, but ELPBC requires thermal optimization for use with applied hyperthermia. Static affinity targeting of fluorescent ligand-ELPBC was then analyzed in vivo using intravital microscopy (IM), immunohistochemistry (IHC), and custom image processing algorithms. IM showed increased accumulation of NGR-ELPBC in tumor tissue relative to normal tissue while RGD-ELPBC and non-ligand ELPBC did not, and IHC verified these observations. This study shows (1) multivalent NGR presentation is suitable for static multivalent targeting of tumors and tumor vasculature, (2) multivalent RGD presentation may be suitable for DAM with thermal optimization, and (3) ELPBC micelles may selectively target proteins at the tumor margin.
Item Open Access Investigations into Multivalent Ligand Binding Thermodynamics(2015) Watts, Brian EdwardVirtually all biologically relevant functions and processes are mediated by non-covalent, molecular recognition events, demonstrating astonishingly diverse affinities and specificities. Despite extensive research, the origin of affinity and specificity in aqueous solution - specifically the relationship between ligand binding thermodynamics and structure - remains remarkably obscure and is further complicated in the context of multivalent interactions. Multivalency describes the combinatorial interaction of multiple discrete epitopes across multiple binding surfaces where the association is considered as the sum of contributions from each epitope and the consequences of multivalent ligand assembly. Gaining the insight necessary to predictably influence biological processes with novel therapeutics begins with an understanding of the molecular basis of solution-phase interactions, and the thermodynamic parameters that follow from those interactions. Here we continue our efforts to understand the basis of aqueous affinity and the nature of multivalent additivity.
Multivalent additivity is the foundation of fragment-based drug discovery, where small, low affinity ligands are covalently assembled into a single high affinity inhibitor. Such systems are ideally suited for investigating the thermodynamic consequences of multivalent ligand assembly. In the first part of this work, we report the design and synthesis of a fragment-based ligand series for the Grb2-SH2 protein and thermodynamic evaluation of the low affinity ligand fragments compared to the intact, high affinity inhibitor by single and double displacement isothermal titration calorimetry (ITC). Interestingly, our investigations reveal positively cooperative multivalent additivity - a binding free energy of the full ligand greater than the sum of its constituent fragments - that is largely enthalpic in origin. These results contradict the most common theory of multivalent affinity enhancement arising from a "savings" in translational and rotational entropy. The Grb2-SH2 system reported here is the third distinct molecular system in which we have observed enthalpically driven multivalent enhancement of affinity.
Previous research by our group into similar multivalent affinity enhancements in protein-carbohydrate systems - the so-called "cluster glycoside effect" - revealed that evaluation of multivalent interactions in the solution-phase is not straightforward due to the accessibility of two disparate binding motifs: intramolecular, chelate-type binding and intermolecular, aggregative binding. Although a number of powerful techniques for evaluation of solution-phase multivalent interactions have been reported, these bulk techniques are often unable to differentiate between binding modes, obscuring thermodynamic interpretation. In the second part of this work, we report a competitive equilibrium approach to Molecular Recognition Force Microscopy (MRFM) for evaluation of ligand binding at the single-molecule level with potential to preclude aggregative associations. We have optimized surface functionalization strategies and MRFM experimental protocols to evaluate the binding constant of surface- and tip-immobilized single stranded DNA epitopes. Surprisingly, the monovalent affinity of an immobilized species is in remarkable agreement with the solution-phase affinity, suggesting the competitive equilibrium MRFM approach presents a unique opportunity to investigate the nature of multivalent additivity at the single molecule level.