Browsing by Subject "Muscle, Smooth, Vascular"
Now showing 1 - 12 of 12
Results Per Page
Sort Options
Item Open Access Biology of intracranial aneurysms: role of inflammation.(Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism, 2012-09) Chalouhi, Nohra; Ali, Muhammad S; Jabbour, Pascal M; Tjoumakaris, Stavropoula I; Gonzalez, L Fernando; Rosenwasser, Robert H; Koch, Walter J; Dumont, Aaron SIntracranial aneurysms (IAs) linger as a potentially devastating clinical problem. Despite intense investigation, our understanding of the mechanisms leading to aneurysm development, progression and rupture remain incompletely defined. An accumulating body of evidence implicates inflammation as a critical contributor to aneurysm pathogenesis. Intracranial aneurysm formation and progression appear to result from endothelial dysfunction, a mounting inflammatory response, and vascular smooth muscle cell phenotypic modulation producing a pro-inflammatory phenotype. A later final common pathway appears to involve apoptosis of cellular constituents of the vessel wall. These changes result in degradation of the integrity of the vascular wall leading to aneurysmal dilation, progression and eventual rupture in certain aneurysms. Various aspects of the inflammatory response have been investigated as contributors to IA pathogenesis including leukocytes, complement, immunoglobulins, cytokines, and other humoral mediators. Furthermore, gene expression profiling of IA compared with control arteries has prominently featured differential expression of genes involved with immune response/inflammation. Preliminary data suggest that therapies targeting the inflammatory response may have efficacy in the future treatment of IA. Further investigation, however, is necessary to elucidate the precise role of inflammation in IA pathogenesis, which can be exploited to improve the prognosis of patients harboring IA.Item Open Access Cigarette smoke modulates vascular smooth muscle phenotype: implications for carotid and cerebrovascular disease.(PloS one, 2013-01) Starke, Robert M; Ali, Muhammad S; Jabbour, Pascal M; Tjoumakaris, Stavropoula I; Gonzalez, Fernando; Hasan, David M; Rosenwasser, Robert H; Owens, Gary K; Koch, Walter J; Dumont, Aaron SBackground
The role of smooth muscle cell (SMC) phenotypic modulation in the cerebral circulation and pathogenesis of stroke has not been determined. Cigarette smoke is a major risk factor for atherosclerosis, but potential mechanisms are unclear, and its role in SMC phenotypic modulation has not been established.Methods and results
In cultured cerebral vascular SMCs, exposure to cigarette smoke extract (CSE) resulted in decreased promoter activity and mRNA expression of key SMC contractile genes (SM-α-actin, SM-22α, SM-MHC) and the transcription factor myocardin in a dose-dependent manner. CSE also induced pro-inflammatory/matrix remodeling genes (MCP-1, MMPs, TNF-α, IL-1β, NF-κB). CSE increased expression of KLF4, a known regulator of SMC differentiation, and siKLF4 inhibited CSE induced suppression of SMC contractile genes and myocardin and activation of inflammatory genes. These mechanisms were confirmed in vivo following exposure of rat carotid arteries to CSE. Chromatin immune-precipitation assays in vivo and in vitro demonstrated that CSE promotes epigenetic changes with binding of KLF4 to the promoter regions of myocardin and SMC marker genes and alterations in promoter acetylation and methylation.Conclusion
CSE exposure results in phenotypic modulation of cerebral SMC through myocardin and KLF4 dependent mechanisms. These results provides a mechanism by which cigarette smoke induces a pro-inflammatory/matrix remodeling phenotype in SMC and an important pathway for cigarette smoke to contribute to atherosclerosis and stroke.Item Open Access Drebrin regulates angiotensin II-induced aortic remodelling.(Cardiovascular research, 2018-11) Zhang, Lisheng; Wu, Jiao-Hui; Huang, Tai-Qin; Nepliouev, Igor; Brian, Leigh; Zhang, Zhushan; Wertman, Virginia; Rudemiller, Nathan P; McMahon, Timothy J; Shenoy, Sudha K; Miller, Francis J; Crowley, Steven D; Freedman, Neil J; Stiber, Jonathan AAims
The actin-binding protein Drebrin is up-regulated in response to arterial injury and reduces smooth muscle cell (SMC) migration and proliferation through its interaction with the actin cytoskeleton. We, therefore, tested the hypothesis that SMC Drebrin inhibits angiotensin II-induced remodelling of the proximal aorta.Methods and results
Angiotensin II was administered via osmotic minipumps at 1000 ng/kg/min continuously for 28 days in SM22-Cre+/Dbnflox/flox (SMC-Dbn-/-) and control mice. Blood pressure responses to angiotensin II were assessed by telemetry. After angiotensin II infusion, we assessed remodelling in the proximal ascending aorta by echocardiography and planimetry of histological cross sections. Although the degree of hypertension was equivalent in SMC-Dbn-/- and control mice, SMC-Dbn-/- mice nonetheless exhibited 60% more proximal aortic medial thickening and two-fold more outward aortic remodelling than control mice in response to angiotensin II. Proximal aortas demonstrated greater cellular proliferation and matrix deposition in SMC-Dbn-/- mice than in control mice, as evidenced by a higher prevalence of proliferating cell nuclear antigen-positive nuclei and higher levels of collagen I. Compared with control mouse aortas, SMC-Dbn-/- aortas demonstrated greater angiotensin II-induced NADPH oxidase activation and inflammation, evidenced by higher levels of Ser-536-phosphorylated NFκB p65 subunits and higher levels of vascular cell adhesion molecule-1, matrix metalloproteinase-9, and adventitial macrophages.Conclusions
We conclude that SMC Drebrin deficiency augments angiotensin II-induced inflammation and adverse aortic remodelling.Item Open Access Fibroblast growth factor 23 is not associated with and does not induce arterial calcification.(Kidney international, 2013-06) Scialla, Julia J; Lau, Wei Ling; Reilly, Muredach P; Isakova, Tamara; Yang, Hsueh-Ying; Crouthamel, Matthew H; Chavkin, Nicholas W; Rahman, Mahboob; Wahl, Patricia; Amaral, Ansel P; Hamano, Takayuki; Master, Stephen R; Nessel, Lisa; Chai, Boyang; Xie, Dawei; Kallem, Radhakrishna R; Chen, Jing; Lash, James P; Kusek, John W; Budoff, Matthew J; Giachelli, Cecilia M; Wolf, Myles; Chronic Renal Insufficiency Cohort Study InvestigatorsElevated fibroblast growth factor 23 (FGF23) is associated with cardiovascular disease in patients with chronic kidney disease. As a potential mediating mechanism, FGF23 induces left ventricular hypertrophy; however, its role in arterial calcification is less clear. In order to study this, we quantified coronary artery and thoracic aorta calcium by computed tomography in 1501 patients from the Chronic Renal Insufficiency Cohort (CRIC) study within a median of 376 days (interquartile range 331-420 days) of baseline. Baseline plasma FGF23 was not associated with the prevalence or severity of coronary artery calcium after multivariable adjustment. In contrast, higher serum phosphate levels were associated with prevalence and severity of coronary artery calcium, even after adjustment for FGF23. Neither FGF23 nor serum phosphate were consistently associated with thoracic aorta calcium. We could not detect mRNA expression of FGF23 or its coreceptor, klotho, in human or mouse vascular smooth muscle cells, or normal or calcified mouse aorta. Whereas elevated phosphate concentrations induced calcification in vitro, FGF23 had no effect on phosphate uptake or phosphate-induced calcification regardless of phosphate concentration or even in the presence of soluble klotho. Thus, in contrast to serum phosphate, FGF23 is not associated with arterial calcification and does not promote calcification experimentally. Hence, phosphate and FGF23 promote cardiovascular disease through distinct mechanisms.Item Open Access G protein-coupled receptor kinase-5 attenuates atherosclerosis by regulating receptor tyrosine kinases and 7-transmembrane receptors.(Arteriosclerosis, thrombosis, and vascular biology, 2012-02) Wu, Jiao-Hui; Zhang, Lisheng; Fanaroff, Alexander C; Cai, Xinjiang; Sharma, Krishn C; Brian, Leigh; Exum, Sabrina T; Shenoy, Sudha K; Peppel, Karsten; Freedman, Neil JObjective
G protein-coupled receptor kinase-5 (GRK5) is a widely expressed Ser/Thr kinase that regulates several atherogenic receptors and may activate or inhibit nuclear factor-κB (NF-κB). This study sought to determine whether and by what mechanisms GRK5 affects atherosclerosis.Methods and results
Grk5(-/-)/Apoe(-/-) mice developed 50% greater aortic atherosclerosis than Apoe(-/-) mice and demonstrated greater proliferation of macrophages and smooth muscle cells (SMCs) in atherosclerotic lesions. In Apoe(-/-) mice, carotid interposition grafts from Grk5(-/-) mice demonstrated greater upregulation of cell adhesion molecules than grafts from wild-type mice and, subsequently, more atherosclerosis. By comparing Grk5(-/-) with wild-type cells, we found that GRK5 desensitized 2 key atherogenic receptor tyrosine kinases: the platelet-derived growth factor receptor-β in SMCs, by augmenting ubiquitination/degradation; and the colony-stimulating factor-1 receptor (CSF-1R) in macrophages, by reducing CSF-1-induced tyrosyl phosphorylation. GRK5 activity in monocytes also reduced migration promoted by the 7-transmembrane receptor for monocyte chemoattractant protein-1 CC chemokine receptor-2. Whereas GRK5 diminished NF-κB-dependent gene expression in SMCs and endothelial cells, it had no effect on NF-κB activity in macrophages.Conclusions
GRK5 attenuates atherosclerosis through multiple cell type-specific mechanisms, including reduction of SMC and endothelial cell NF-κB activity and desensitization of receptor-specific signaling through the monocyte CC chemokine receptor-2, macrophage CSF-1R, and the SMC platelet-derived growth factor receptor-β.Item Open Access Kalirin promotes neointimal hyperplasia by activating Rac in smooth muscle cells.(Arteriosclerosis, thrombosis, and vascular biology, 2013-04) Wu, Jiao-Hui; Fanaroff, Alexander C; Sharma, Krishn C; Smith, Liisa S; Brian, Leigh; Eipper, Betty A; Mains, Richard E; Freedman, Neil J; Zhang, LishengObjective
Kalirin is a multifunctional protein that contains 2 guanine nucleotide exchange factor domains for the GTPases Rac1 and RhoA. Variants of KALRN have been associated with atherosclerosis in humans, but Kalirin's activity has been characterized almost exclusively in the central nervous system. We therefore tested the hypothesis that Kalirin functions as a Rho-guanine nucleotide exchange factor in arterial smooth muscle cells (SMCs).Approach and results
Kalirin-9 protein is expressed abundantly in aorta and bone marrow, as well as in cultured SMCs, endothelial cells, and macrophages. Moreover, arterial Kalirin was upregulated during early atherogenesis in apolipoprotein E-deficient mice. In cultured SMCs, signaling was affected similarly in 3 models of Kalirin loss-of-function: heterozygous Kalrn deletion, Kalirin RNAi, and treatment with the Kalirin Rho-guanine nucleotide exchange factor -1 inhibitor 1-(3-nitrophenyl)-1H-pyrrole-2,5-dione. With reduced Kalirin function, SMCs showed normal RhoA activation but diminished Rac1 activation, assessed as reduced Rac-GTP levels, p21-activated kinase autophosphorylation, and SMC migration. Kalrn(-/+) SMCs proliferated 30% less rapidly than wild-type SMCs. Neointimal hyperplasia engendered by carotid endothelial denudation was ≈60% less in Kalrn(-/+) and SMC-specific Kalrn(-/+) mice than in control mice.Conclusions
Kalirin functions as a guanine nucleotide exchange factor for Rac1 in SMCs, and promotes SMC migration and proliferation both in vitro and in vivo.Item Open Access Kruppel-like factor 15 is critical for vascular inflammation.(The Journal of clinical investigation, 2013-10) Lu, Yuan; Zhang, Lisheng; Liao, Xudong; Sangwung, Panjamaporn; Prosdocimo, Domenick A; Zhou, Guangjin; Votruba, Alexander R; Brian, Leigh; Han, Yuh Jung; Gao, Huiyun; Wang, Yunmei; Shimizu, Koichi; Weinert-Stein, Kaitlyn; Khrestian, Maria; Simon, Daniel I; Freedman, Neil J; Jain, Mukesh KActivation of cells intrinsic to the vessel wall is central to the initiation and progression of vascular inflammation. As the dominant cellular constituent of the vessel wall, vascular smooth muscle cells (VSMCs) and their functions are critical determinants of vascular disease. While factors that regulate VSMC proliferation and migration have been identified, the endogenous regulators of VSMC proinflammatory activation remain incompletely defined. The Kruppel-like family of transcription factors (KLFs) are important regulators of inflammation. In this study, we identified Kruppel-like factor 15 (KLF15) as an essential regulator of VSMC proinflammatory activation. KLF15 levels were markedly reduced in human atherosclerotic tissues. Mice with systemic and smooth muscle-specific deficiency of KLF15 exhibited an aggressive inflammatory vasculopathy in two distinct models of vascular disease: orthotopic carotid artery transplantation and diet-induced atherosclerosis. We demonstrated that KLF15 alters the acetylation status and activity of the proinflammatory factor NF-κB through direct interaction with the histone acetyltransferase p300. These studies identify a previously unrecognized KLF15-dependent pathway that regulates VSMC proinflammatory activation.Item Open Access Phosphorylation of USP20 on Ser334 by IRAK1 promotes IL-1β-evoked signaling in vascular smooth muscle cells and vascular inflammation.(The Journal of biological chemistry, 2023-07) Zhang, Lisheng; Wu, Jiao-Hui; Jean-Charles, Pierre-Yves; Murali, Pavitra; Zhang, Wenli; Jazic, Aeva; Kaur, Suneet; Nepliouev, Igor; Stiber, Jonathan A; Snow, Kamie; Freedman, Neil J; Shenoy, Sudha KReversible lysine-63 (K63) polyubiquitination regulates proinflammatory signaling in vascular smooth muscle cells (SMCs) and plays an integral role in atherosclerosis. Ubiquitin-specific peptidase 20 (USP20) reduces NFκB activation triggered by proinflammatory stimuli, and USP20 activity attenuates atherosclerosis in mice. The association of USP20 with its substrates triggers deubiquitinase activity; this association is regulated by phosphorylation of USP20 on Ser334 (mouse) or Ser333 (human). USP20 Ser333 phosphorylation was greater in SMCs of atherosclerotic segments of human arteries as compared with nonatherosclerotic segments. To determine whether USP20 Ser334 phosphorylation regulates proinflammatory signaling, we created USP20-S334A mice using CRISPR/Cas9-mediated gene editing. USP20-S334A mice developed ∼50% less neointimal hyperplasia than congenic WT mice after carotid endothelial denudation. WT carotid SMCs showed substantial phosphorylation of USP20 Ser334, and WT carotids demonstrated greater NFκB activation, VCAM-1 expression, and SMC proliferation than USP20-S334A carotids. Concordantly, USP20-S334A primary SMCs in vitro proliferated and migrated less than WT SMCs in response to IL-1β. An active site ubiquitin probe bound to USP20-S334A and USP20-WT equivalently, but USP20-S334A associated more avidly with TRAF6 than USP20-WT. IL-1β induced less K63-linked polyubiquitination of TRAF6 and less downstream NFκB activity in USP20-S334A than in WT SMCs. Using in vitro phosphorylation with purified IRAK1 and siRNA-mediated gene silencing of IRAK1 in SMCs, we identified IRAK1 as a novel kinase for IL-1β-induced USP20 Ser334 phosphorylation. Our findings reveal novel mechanisms regulating IL-1β-induced proinflammatory signaling: by phosphorylating USP20 Ser334, IRAK1 diminishes the association of USP20 with TRAF6 and thus augments NFκB activation, SMC inflammation, and neointimal hyperplasia.Item Open Access Targeting Gbeta gamma signaling in arterial vascular smooth muscle proliferation: a novel strategy to limit restenosis.(Proc Natl Acad Sci U S A, 1999-03-30) Iaccarino, G; Smithwick, LA; Lefkowitz, RJ; Koch, WJRestenosis continues to be a major problem limiting the effectiveness of revascularization procedures. To date, the roles of heterotrimeric G proteins in the triggering of pathological vascular smooth muscle (VSM) cell proliferation have not been elucidated. betagamma subunits of heterotrimeric G proteins (Gbetagamma) are known to activate mitogen-activated protein (MAP) kinases after stimulation of certain G protein-coupled receptors; however, their relevance in VSM mitogenesis in vitro or in vivo is not known. Using adenoviral-mediated transfer of a transgene encoding a peptide inhibitor of Gbetagamma signaling (betaARKct), we evaluated the role of Gbetagamma in MAP kinase activation and proliferation in response to several mitogens, including serum, in cultured rat VSM cells. Our results include the striking finding that serum-induced proliferation of VSM cells in vitro is mediated largely via Gbetagamma. Furthermore, we studied the effects of in vivo adenoviral-mediated betaARKct gene transfer on VSM intimal hyperplasia in a rat carotid artery restenosis model. Our in vivo results demonstrated that the presence of the betaARKct in injured rat carotid arteries significantly reduced VSM intimal hyperplasia by 70%. Thus, Gbetagamma plays a critical role in physiological VSM proliferation, and targeted Gbetagamma inhibition represents a novel approach for the treatment of pathological conditions such as restenosis.Item Open Access The Actin-Binding Protein Drebrin Inhibits Neointimal Hyperplasia.(Arteriosclerosis, thrombosis, and vascular biology, 2016-05) Stiber, Jonathan A; Wu, Jiao-Hui; Zhang, Lisheng; Nepliouev, Igor; Zhang, Zhu-Shan; Bryson, Victoria G; Brian, Leigh; Bentley, Rex C; Gordon-Weeks, Phillip R; Rosenberg, Paul B; Freedman, Neil JObjective
Vascular smooth muscle cell (SMC) migration is regulated by cytoskeletal remodeling as well as by certain transient receptor potential (TRP) channels, nonselective cation channels that modulate calcium influx. Proper function of multiple subfamily C TRP (TRPC) channels requires the scaffolding protein Homer 1, which associates with the actin-binding protein Drebrin. We found that SMC Drebrin expression is upregulated in atherosclerosis and in response to injury and investigated whether Drebrin inhibits SMC activation, either through regulation of TRP channel function via Homer or through a direct effect on the actin cytoskeleton.Approach and results
Wild-type (WT) and congenic Dbn(-/+) mice were subjected to wire-mediated carotid endothelial denudation. Subsequent neointimal hyperplasia was 2.4±0.3-fold greater in Dbn(-/+) than in WT mice. Levels of globular actin were equivalent in Dbn(-/+) and WT SMCs, but there was a 2.4±0.5-fold decrease in filamentous actin in Dbn(-/+) SMCs compared with WT. Filamentous actin was restored to WT levels in Dbn(-/+) SMCs by adenoviral-mediated rescue expression of Drebrin. Compared with WT SMCs, Dbn(-/+) SMCs exhibited increased TRP channel activity in response to platelet-derived growth factor, increased migration assessed in Boyden chambers, and increased proliferation. Enhanced TRP channel activity and migration in Dbn(-/+) SMCs were normalized to WT levels by rescue expression of not only WT Drebrin but also a mutant Drebrin isoform that binds actin but fails to bind Homer.Conclusions
Drebrin reduces SMC activation through its interaction with the actin cytoskeleton but independently of its interaction with Homer scaffolds.Item Open Access TNF-α induces phenotypic modulation in cerebral vascular smooth muscle cells: implications for cerebral aneurysm pathology.(Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism, 2013-10) Ali, Muhammad S; Starke, Robert M; Jabbour, Pascal M; Tjoumakaris, Stavropoula I; Gonzalez, L Fernando; Rosenwasser, Robert H; Owens, Gary K; Koch, Walter J; Greig, Nigel H; Dumont, Aaron SLittle is known about vascular smooth muscle cell (SMC) phenotypic modulation in the cerebral circulation or pathogenesis of intracranial aneurysms. Tumor necrosis factor-alpha (TNF-α) has been associated with aneurysms, but potential mechanisms are unclear. Cultured rat cerebral SMCs overexpressing myocardin induced expression of key SMC contractile genes (SM-α-actin, SM-22α, smooth muscle myosin heavy chain), while dominant-negative cells suppressed expression. Tumor necrosis factor-alpha treatment inhibited this contractile phenotype and induced pro-inflammatory/matrix-remodeling genes (monocyte chemoattractant protein-1, matrix metalloproteinase-3, matrix metalloproteinase-9, vascular cell adhesion molecule-1, interleukin-1 beta). Tumor necrosis factor-alpha increased expression of KLF4, a known regulator of SMC differentiation. Kruppel-like transcription factor 4 (KLF4) small interfering RNA abrogated TNF-α activation of inflammatory genes and suppression of contractile genes. These mechanisms were confirmed in vivo after exposure of rat carotid arteries to TNF-α and early on in a model of cerebral aneurysm formation. Treatment with the synthesized TNF-α inhibitor 3,6-dithiothalidomide reversed pathologic vessel wall alterations after induced hypertension and hemodynamic stress. Chromatin immunoprecipitation assays in vivo and in vitro demonstrated that TNF-α promotes epigenetic changes through KLF4-dependent alterations in promoter regions of myocardin, SMCs, and inflammatory genes. In conclusion, TNF-α induces phenotypic modulation of cerebral SMCs through myocardin and KLF4-regulated pathways. These results demonstrate a novel role for TNF-α in promoting a pro-inflammatory/matrix-remodeling phenotype, which has important implications for the mechanisms behind intracranial aneurysm formation.Item Open Access Utility of telomerase-pot1 fusion protein in vascular tissue engineering.(Cell Transplant, 2010) Petersen, Thomas H; Hitchcock, Thomas; Muto, Akihito; Calle, Elizabeth A; Zhao, Liping; Gong, Zhaodi; Gui, Liqiong; Dardik, Alan; Bowles, Dawn E; Counter, Christopher M; Niklason, Laura EWhile advances in regenerative medicine and vascular tissue engineering have been substantial in recent years, important stumbling blocks remain. In particular, the limited life span of differentiated cells that are harvested from elderly human donors is an important limitation in many areas of regenerative medicine. Recently, a mutant of the human telomerase reverse transcriptase enzyme (TERT) was described, which is highly processive and elongates telomeres more rapidly than conventional telomerase. This mutant, called pot1-TERT, is a chimeric fusion between the DNA binding protein pot1 and TERT. Because pot1-TERT is highly processive, it is possible that transient delivery of this transgene to cells that are utilized in regenerative medicine applications may elongate telomeres and extend cellular life span while avoiding risks that are associated with retroviral or lentiviral vectors. In the present study, adenoviral delivery of pot1-TERT resulted in transient reconstitution of telomerase activity in human smooth muscle cells, as demonstrated by telomeric repeat amplification protocol (TRAP). In addition, human engineered vessels that were cultured using pot1-TERT-expressing cells had greater collagen content and somewhat better performance in vivo than control grafts. Hence, transient delivery of pot1-TERT to elderly human cells may be useful for increasing cellular life span and improving the functional characteristics of resultant tissue-engineered constructs.