Browsing by Subject "Muscular Diseases"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Natural Progression of Canine Glycogen Storage Disease Type IIIa.(Comp Med, 2016-02) Brooks, Elizabeth D; Yi, Haiqing; Austin, Stephanie L; Thurberg, Beth L; Young, Sarah P; Fyfe, John C; Kishnani, Priya S; Sun, BaodongGlycogen storage disease type IIIa (GSD IIIa) is caused by a deficiency of glycogen debranching enzyme activity. Hepatomegaly, muscle degeneration, and hypoglycemia occur in human patients at an early age. Long-term complications include liver cirrhosis, hepatic adenomas, and generalized myopathy. A naturally occurring canine model of GSD IIIa that mimics the human disease has been described, with progressive liver disease and skeletal muscle damage likely due to excess glycogen deposition. In the current study, long-term follow-up of previously described GSD IIIa dogs until 32 mo of age (n = 4) and of family-owned GSD IIIa dogs until 11 to 12 y of age (n = 2) revealed that elevated concentrations of liver and muscle enzyme (AST, ALT, ALP, and creatine phosphokinase) decreased over time, consistent with hepatic cirrhosis and muscle fibrosis. Glycogen deposition in many skeletal muscles; the tongue, diaphragm, and heart; and the phrenic and sciatic nerves occurred also. Furthermore, the urinary biomarker Glc4, which has been described in many types of GSD, was first elevated and then decreased later in life. This urinary biomarker demonstrated a similar trend as AST and ALT in GSD IIIa dogs, indicating that Glc4 might be a less invasive biomarker of hepatocellular disease. Finally, the current study further demonstrates that the canine GSD IIIa model adheres to the clinical course in human patients with this disorder and is an appropriate model for developing novel therapies.Item Open Access Self-reported pain and disability outcomes from an endogenous model of muscular back pain.(BMC Musculoskelet Disord, 2011-02-02) Bishop, Mark D; Horn, Maggie E; George, Steven Z; Robinson, Michael EBACKGROUND: Our purpose was to develop an induced musculoskeletal pain model of acute low back pain and examine the relationship among pain, disability and fear in this model. METHODS: Delayed onset muscle soreness was induced in 52 healthy volunteers (23 women, 17 men; average age 22.4 years; average BMI 24.3) using fatiguing trunk extension exercise. Measures of pain intensity, unpleasantness, and location, and disability, were tracked for one week after exercise. RESULTS: Pain intensity ranged from 0 to 68 with 57.5% of participants reporting peak pain at 24 hours and 32.5% reporting this at 48 hours. The majority of participants reported pain in the low back with 33% also reporting pain in the legs. The ratio of unpleasantness to intensity indicated that the sensation was considered more unpleasant than intense. Statistical differences were noted in levels of reported disability between participants with and without leg pain. Pain intensity at 24 hours was correlated with pain unpleasantness, pain area and disability. Also, fear of pain was associated with pain intensity and unpleasantness. Disability was predicted by sex, presence of leg pain, and pain intensity; however, the largest amount of variance was explained by pain intensity (27% of a total 40%). The second model, predicting pain intensity only included fear of pain and explained less than 10% of the variance in pain intensity. CONCLUSIONS: Our results demonstrate a significant association between pain and disability in this model in young adults. However, the model is most applicable to patients with lower levels of pain and disability. Future work should include older adults to improve the external validity of this model.Item Open Access The junctophilin family of proteins: from bench to bedside.(Trends in molecular medicine, 2014-06) Landstrom, AP; Beavers, DL; Wehrens, XHTExcitable tissues rely on junctional membrane complexes to couple cell surface signals to intracellular channels. The junctophilins have emerged as a family of proteins critical in coordinating the maturation and maintenance of this cellular ultrastructure. Within skeletal and cardiac muscle, junctophilin 1 and junctophilin 2, respectively, couple sarcolemmal and intracellular calcium channels. In neuronal tissue, junctophilin 3 and junctophilin 4 may have an emerging role in coupling membrane neurotransmitter receptors and intracellular calcium channels. These important physiological roles are highlighted by the pathophysiology which results when these proteins are perturbed, and a growing body of literature has associated junctophilins with the pathogenesis of human disease.Item Open Access Tongue weakness and atrophy differentiates late-onset Pompe disease from other forms of acquired/hereditary myopathy.(Molecular genetics and metabolism, 2021-07) Jones, Harrison N; Hobson-Webb, Lisa D; Kuchibhatla, Maragatha; Crisp, Kelly D; Whyte-Rayson, Ashley; Batten, Milisa T; Zwelling, Paul J; Kishnani, Priya SLate-onset Pompe disease (LOPD) is an inherited autosomal recessive progressive metabolic myopathy that presents in the first year of life to adulthood. Clinical presentation is heterogeneous, differential diagnosis is challenging, and diagnostic delay is common. One challenge to differential diagnosis is the overlap of clinical features with those encountered in other forms of acquired/hereditary myopathy. Tongue weakness and imaging abnormalities are increasingly recognized in LOPD. In order to explore the diagnostic potential of tongue involvement in LOPD, we assessed tongue structure and function in 70 subjects, including 10 with LOPD naive to treatment, 30 with other acquired/hereditary myopathy, and 30 controls with neuropathy. Tongue strength was assessed with both manual and quantitative muscle testing. Ultrasound (US) was used to assess tongue overall appearance, echointensity, and thickness. Differences in tongue strength, qualitative appearance, echointensity, and thickness between LOPD subjects and neuropathic controls were statistically significant. Greater tongue involvement was observed in LOPD subjects compared to those with other acquired/hereditary myopathies, based on statistically significant decreases in quantitative tongue strength and sonographic muscle thickness. These findings provide additional evidence for tongue involvement in LOPD characterized by weakness and sonographic abnormalities suggestive of fibrofatty replacement and atrophy. Findings of quantitative tongue weakness and/or atrophy may aid differentiation of LOPD from other acquired/hereditary myopathies. Additionally, our experiences in this study reveal US to be an effective, efficient imaging modality to allow quantitative assessment of the lingual musculature at the point of care.