Browsing by Subject "NANOWIRE"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Open Access Cavity-free photon blockade induced by many-body bound states.(Physical review letters, 2011-11) Zheng, Huaixiu; Gauthier, Daniel J; Baranger, Harold UThe manipulation of individual, mobile quanta is a key goal of quantum communication; to achieve this, nonlinear phenomena in open systems can play a critical role. We show theoretically that a variety of strong quantum nonlinear phenomena occur in a completely open one-dimensional waveguide coupled to an N-type four-level system. We focus on photon blockade and the creation of single-photon states in the absence of a cavity. Many-body bound states appear due to the strong photon-photon correlation mediated by the four-level system. These bound states cause photon blockade, which can generate a sub-Poissonian single-photon source.Item Open Access Floquet Majorana fermions for topological qubits in superconducting devices and cold-atom systems.(Physical review letters, 2013-07) Liu, Dong E; Levchenko, Alex; Baranger, Harold UWe develop an approach to realizing a topological phase transition and non-Abelian braiding statistics with dynamically induced Floquet Majorana fermions (FMFs). When the periodic driving potential does not break fermion parity conservation, FMFs can encode quantum information. Quasienergy analysis shows that a stable FMF zero mode and two other satellite modes exist in a wide parameter space with large quasienergy gaps, which prevents transitions to other Floquet states under adiabatic driving. We also show that in the asymptotic limit FMFs preserve non-Abelian braiding statistics and, thus, behave like their equilibrium counterparts.Item Open Access Observation of Majorana quantum critical behaviour in a resonant level coupled to a dissipative environment(Nature Physics, 2013) Mebrahtu, HT; Borzenets, IV; Zheng, H; Bomze, YV; Smirnov, AI; Florens, S; Baranger, HU; Finkelstein, GA quantum phase transition is an abrupt change between two distinct ground states of a many-body system, driven by an external parameter. In the vicinity of the quantum critical point (QCP) where the transition occurs, a new phase may emerge that is determined by quantum fluctuations and is very different from either phase. In particular, a conducting system may exhibit non-Fermi-liquid behaviour. Although this scenario is well established theoretically, controllable experimental realizations are rare. Here, we experimentally investigate the nature of the QCP in a simple nanoscale system-a spin-polarized resonant level coupled to dissipative contacts. We fine-tune the system to the QCP, realized exactly on-resonance and when the coupling between the level and the two contacts is symmetric. Several anomalous transport scaling laws are demonstrated, including a striking non-Fermi-liquid scattering rate at the QCP, indicating fractionalization of the resonant level into two Majorana quasiparticles.Item Open Access Strongly correlated photons generated by coupling a three- or four-level system to a waveguide(Physical Review A - Atomic, Molecular, and Optical Physics, 2012-04-19) Zheng, H; Gauthier, DJ; Baranger, HUWe study the generation of strongly correlated photons by coupling an atom to photonic quantum fields in a one-dimensional waveguide. Specifically, we consider a three-level or four-level system for the atom. Photon-photon bound states emerge as a manifestation of the strong photon-photon correlation mediated by the atom. Effective repulsive or attractive interaction between photons can be produced, causing either suppressed multiphoton transmission (photon blockade) or enhanced multiphoton transmission (photon-induced tunneling). As a result, nonclassical light sources can be generated on demand by sending coherent states into the proposed system. We calculate the second-order correlation function of the transmitted field and observe bunching and antibunching caused by the bound states. Furthermore, we demonstrate that the proposed system can produce photon pairs with a high degree of spectral entanglement, which have a large capacity for carrying information and are important for large-alphabet quantum communication. © 2012 American Physical Society.Item Open Access Waveguide-QED-based photonic quantum computation.(Physical review letters, 2013-08) Zheng, Huaixiu; Gauthier, Daniel J; Baranger, Harold UWe propose a new scheme for quantum computation using flying qubits--propagating photons in a one-dimensional waveguide interacting with matter qubits. Photon-photon interactions are mediated by the coupling to a four-level system, based on which photon-photon π-phase gates (CONTROLLED-NOT) can be implemented for universal quantum computation. We show that high gate fidelity is possible, given recent dramatic experimental progress in superconducting circuits and photonic-crystal waveguides. The proposed system can be an important building block for future on-chip quantum networks.