Browsing by Subject "NLR Family, Pyrin Domain-Containing 3 Protein"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Bladder fibrosis during outlet obstruction is triggered through the NLRP3 inflammasome and the production of IL-1β.(American journal of physiology. Renal physiology, 2017-09) Hughes, Francis M; Sexton, Stephanie J; Jin, Huixia; Govada, Vihasa; Purves, J ToddBladder outlet obstruction (BOO) triggers inflammation in the bladder through the NLRP3 inflammasome. BOO also activates fibrosis, which is largely responsible for the decompensation of the bladder in the chronic state. Because fibrosis can be driven by inflammation, we have explored a role for NLRP3 (and IL-1β produced by NLRP3) in the activation and progression of BOO-induced fibrosis. Female rats were divided into five groups: 1) control, 2) sham, 3) BOO + vehicle, 4) BOO + the NLRP3 inhibitor glyburide, or 5) BOO + the IL-1β receptor antagonist anakinra. Fibrosis was assessed by Masson's trichrome stain, collagen secretion via Sirius Red, and protein localization by immunofluorescence. BOO increased collagen production in the bladder, which was blocked by glyburide and anakinra, clearly implicating the NLRP3/IL-1β pathway in fibrosis. The collagen was primarily found in the lamina propria and the smooth muscle, while IL-1 receptor 1 and prolyl 4-hydroylase (an enzyme involved in the intracellular modification of collagen) both localized to the urothelium and the smooth muscle. Lysyl oxidase, the enzyme involved in the final extracellular assembly of mature collagen fibrils, was found to some extent in the lamina propria where its expression was greatly enhanced during BOO. In vitro studies demonstrated isolated urothelial cells from BOO rats secreted substantially more collagen than controls, and collagen expression in control cultures could be directly stimulated by IL-1β. In summary, NLRP3-derived-IL-1β triggers fibrosis during BOO, most likely through an autocrine loop in which IL-1β acts on urothelia to drive collagen production.Item Open Access NLRP3 signaling drives macrophage-induced adaptive immune suppression in pancreatic carcinoma.(The Journal of experimental medicine, 2017-06) Daley, Donnele; Mani, Vishnu R; Mohan, Navyatha; Akkad, Neha; Pandian, Gautam SD Balasubramania; Savadkar, Shivraj; Lee, Ki Buom; Torres-Hernandez, Alejandro; Aykut, Berk; Diskin, Brian; Wang, Wei; Farooq, Mohammad S; Mahmud, Arif I; Werba, Gregor; Morales, Eduardo J; Lall, Sarah; Wadowski, Benjamin J; Rubin, Amanda G; Berman, Matthew E; Narayanan, Rajkishen; Hundeyin, Mautin; Miller, GeorgeThe tumor microenvironment (TME) in pancreatic ductal adenocarcinoma (PDA) is characterized by immune tolerance, which enables disease to progress unabated by adaptive immunity. However, the drivers of this tolerogenic program are incompletely defined. In this study, we found that NLRP3 promotes expansion of immune-suppressive macrophages in PDA. NLRP3 signaling in macrophages drives the differentiation of CD4+ T cells into tumor-promoting T helper type 2 cell (Th2 cell), Th17 cell, and regulatory T cell populations while suppressing Th1 cell polarization and cytotoxic CD8+ T cell activation. The suppressive effects of NLRP3 signaling were IL-10 dependent. Pharmacological inhibition or deletion of NLRP3, ASC (apoptosis-associated speck-like protein containing a CARD complex), or caspase-1 protected against PDA and was associated with immunogenic reprogramming of innate and adaptive immunity within the TME. Similarly, transfer of PDA-entrained macrophages or T cells from NLRP3-/- hosts was protective. These data suggest that targeting NLRP3 holds the promise for the immunotherapy of PDA.Item Open Access Pyruvate dehydrogenase kinase supports macrophage NLRP3 inflammasome activation during acute inflammation.(Cell reports, 2023-01) Meyers, Allison K; Wang, Zhan; Han, Wenzheng; Zhao, Qingxia; Zabalawi, Manal; Duan, Likun; Liu, Juan; Zhang, Qianyi; Manne, Rajesh K; Lorenzo, Felipe; Quinn, Matthew A; Song, Qianqian; Fan, Daping; Lin, Hui-Kuan; Furdui, Cristina M; Locasale, Jason W; McCall, Charles E; Zhu, XueweiActivating the macrophage NLRP3 inflammasome can promote excessive inflammation with severe cell and tissue damage and organ dysfunction. Here, we show that pharmacological or genetic inhibition of pyruvate dehydrogenase kinase (PDHK) significantly attenuates NLRP3 inflammasome activation in murine and human macrophages and septic mice by lowering caspase-1 cleavage and interleukin-1β (IL-1β) secretion. Inhibiting PDHK reverses NLRP3 inflammasome-induced metabolic reprogramming, enhances autophagy, promotes mitochondrial fusion over fission, preserves crista ultrastructure, and attenuates mitochondrial reactive oxygen species (ROS) production. The suppressive effect of PDHK inhibition on the NLRP3 inflammasome is independent of its canonical role as a pyruvate dehydrogenase regulator. Our study suggests a non-canonical role of mitochondrial PDHK in promoting mitochondrial stress and supporting NLRP3 inflammasome activation during acute inflammation.Item Open Access The NLRP3 Inflammasome Mediates Inflammation Produced by Bladder Outlet Obstruction.(The Journal of urology, 2016-05) Hughes, Francis M; Hill, Hayden M; Wood, Case M; Edmondson, Andrew T; Dumas, Aliya; Foo, Wen-Chi; Oelsen, James M; Rac, Goran; Purves, J ToddWhile bladder outlet obstruction is well established to elicit an inflammatory reaction in the bladder that leads to overactive bladder and fibrosis, little is known about the mechanism by which this is initiated. NLRs (NOD-like receptors) and the structures that they form (inflammasomes) have been identified as sensors of cellular damage, including pressure induced damage, and triggers of inflammation. Recently we identified these structures in the urothelium. In this study we assessed the role of the NLRP3 (NACHT, LRR and PYD domains-containing protein 3) inflammasome in bladder dysfunction resulting from bladder outlet obstruction.Bladder outlet obstruction was created in female rats by inserting a 1 mm outer diameter transurethral catheter, tying a silk ligature around the urethra and removing the catheter. Untreated and sham operated rats served as controls. Rats with bladder outlet obstruction were given vehicle (10% ethanol) or 10 mg/kg glyburide (a NLRP3 inhibitor) orally daily for 12 days. Inflammasome activity, bladder hypertrophy, inflammation and bladder function (urodynamics) were assessed.Bladder outlet obstruction increased urothelial inflammasome activity, bladder hypertrophy and inflammation, and decreased voided volume. Glyburide blocked inflammasome activation, reduced hypertrophy and prevented inflammation. The decrease in voided volume was also attenuated by glyburide mechanistically as an increase in detrusor contraction duration and voiding period.Results suggest the importance of the NLRP3 inflammasome in the induction of inflammation and bladder dysfunction secondary to bladder outlet obstruction. Arresting these processes with NLRP3 inhibitors may prove useful to treat the symptoms that they produce.