Browsing by Subject "Neoplasm Transplantation"
Now showing 1 - 12 of 12
Results Per Page
Sort Options
Item Open Access Boosting high-intensity focused ultrasound-induced anti-tumor immunity using a sparse-scan strategy that can more effectively promote dendritic cell maturation.(J Transl Med, 2010-01-27) Liu, Fang; Hu, Zhenlin; Qiu, Lei; Hui, Chun; Li, Chao; Zhong, Pei; Zhang, JunpingBACKGROUND: The conventional treatment protocol in high-intensity focused ultrasound (HIFU) therapy utilizes a dense-scan strategy to produce closely packed thermal lesions aiming at eradicating as much tumor mass as possible. However, this strategy is not most effective in terms of inducing a systemic anti-tumor immunity so that it cannot provide efficient micro-metastatic control and long-term tumor resistance. We have previously provided evidence that HIFU may enhance systemic anti-tumor immunity by in situ activation of dendritic cells (DCs) inside HIFU-treated tumor tissue. The present study was conducted to test the feasibility of a sparse-scan strategy to boost HIFU-induced anti-tumor immune response by more effectively promoting DC maturation. METHODS: An experimental HIFU system was set up to perform tumor ablation experiments in subcutaneous implanted MC-38 and B16 tumor with dense- or sparse-scan strategy to produce closely-packed or separated thermal lesions. DCs infiltration into HIFU-treated tumor tissues was detected by immunohistochemistry and flow cytometry. DCs maturation was evaluated by IL-12/IL-10 production and CD80/CD86 expression after co-culture with tumor cells treated with different HIFU. HIFU-induced anti-tumor immune response was evaluated by detecting growth-retarding effects on distant re-challenged tumor and tumor-specific IFN-gamma-secreting cells in HIFU-treated mice. RESULTS: HIFU exposure raised temperature up to 80 degrees centigrade at beam focus within 4 s in experimental tumors and led to formation of a well-defined thermal lesion. The infiltrated DCs were recruited to the periphery of lesion, where the peak temperature was only 55 degrees centigrade during HIFU exposure. Tumor cells heated to 55 degrees centigrade in 4-s HIFU exposure were more effective to stimulate co-cultured DCs to mature. Sparse-scan HIFU, which can reserve 55 degrees-heated tumor cells surrounding the separated lesions, elicited an enhanced anti-tumor immune response than dense-scan HIFU, while their suppressive effects on the treated primary tumor were maintained at the same level. Flow cytometry analysis showed that sparse-scan HIFU was more effective than dense-scan HIFU in enhancing DC infiltration into tumor tissues and promoting their maturation in situ. CONCLUSION: Optimizing scan strategy is a feasible way to boost HIFU-induced anti-tumor immunity by more effectively promoting DC maturation.Item Restricted c-Myc is required for maintenance of glioma cancer stem cells.(PLoS One, 2008) Wang, J; Wang, H; Li, Z; Wu, Q; Lathia, JD; McLendon, RE; Hjelmeland, AB; Rich, JNBACKGROUND: Malignant gliomas rank among the most lethal cancers. Gliomas display a striking cellular heterogeneity with a hierarchy of differentiation states. Recent studies support the existence of cancer stem cells in gliomas that are functionally defined by their capacity for extensive self-renewal and formation of secondary tumors that phenocopy the original tumors. As the c-Myc oncoprotein has recognized roles in normal stem cell biology, we hypothesized that c-Myc may contribute to cancer stem cell biology as these cells share characteristics with normal stem cells. METHODOLOGY/PRINCIPAL FINDINGS: Based on previous methods that we and others have employed, tumor cell populations were enriched or depleted for cancer stem cells using the stem cell marker CD133 (Prominin-1). We characterized c-Myc expression in matched tumor cell populations using real time PCR, immunoblotting, immunofluorescence and flow cytometry. Here we report that c-Myc is highly expressed in glioma cancer stem cells relative to non-stem glioma cells. To interrogate the significance of c-Myc expression in glioma cancer stem cells, we targeted its expression using lentivirally transduced short hairpin RNA (shRNA). Knockdown of c-Myc in glioma cancer stem cells reduced proliferation with concomitant cell cycle arrest in the G(0)/G(1) phase and increased apoptosis. Non-stem glioma cells displayed limited dependence on c-Myc expression for survival and proliferation. Further, glioma cancer stem cells with decreased c-Myc levels failed to form neurospheres in vitro or tumors when xenotransplanted into the brains of immunocompromised mice. CONCLUSIONS/SIGNIFICANCE: These findings support a central role of c-Myc in regulating proliferation and survival of glioma cancer stem cells. Targeting core stem cell pathways may offer improved therapeutic approaches for advanced cancers.Item Open Access Donor cell leukemia in umbilical cord blood transplant patients: a case study and literature review highlighting the importance of molecular engraftment analysis.(The Journal of molecular diagnostics : JMD, 2010-07) Crow, Jennifer; Youens, Kenneth; Michalowski, Susan; Perrine, Gail; Emhart, Cassandra; Johnson, Felicia; Gerling, Amy; Kurtzberg, Joanne; Goodman, Barbara K; Sebastian, Siby; Rehder, Catherine W; Datto, Michael BDonor cell neoplasms are rare complications of treatment regimens that involve stem cell transplantation for hematological malignancies, myelodysplastic processes, or certain genetic or metabolic disorders. We report a case of donor cell leukemia in a pediatric patient with a history of acute myeloid leukemia that manifested as recurrent AML FAB type M5 fourteen months after umbilical cord blood transplantation. Although there was some immunophenotypic drift from the patient's original AML and their posttransplant presentation, the initial pathological impression was of recurrent disease. Bone marrow engraftment analysis by multiplex PCR of short tandem repeat markers performed on the patient's diagnostic specimen showed complete engraftment by donor cells, with a loss of heterozygosity in the donor alleles on chromosome 7. This led to the reinterpretation of this patient's disease as donor-derived leukemia. This interpretation was supported by a routine karyotype and fluorescence in situ hybridization analysis showing loss of chromosome 7 and a male (donor) chromosome complement in this female patient. Also noted was a loss of the patient's presenting chromosomal abnormality, t(11;19)(q23;p13). This case highlights the need for close coordination between all aspects of clinical testing for the transplant patient, including molecular engraftment studies, when distinguishing the very common complication of recurrent disease from the exceedingly rare complication of donor cell leukemia.Item Open Access EGFRvIII-specific chimeric antigen receptor T cells migrate to and kill tumor deposits infiltrating the brain parenchyma in an invasive xenograft model of glioblastoma.(PLoS One, 2014) Miao, Hongsheng; Choi, Bryan D; Suryadevara, Carter M; Sanchez-Perez, Luis; Yang, Shicheng; De Leon, Gabriel; Sayour, Elias J; McLendon, Roger; Herndon, James E; Healy, Patrick; Archer, Gary E; Bigner, Darell D; Johnson, Laura A; Sampson, John HGlioblastoma (GBM) is the most common primary malignant brain tumor in adults and is uniformly lethal. T-cell-based immunotherapy offers a promising platform for treatment given its potential to specifically target tumor tissue while sparing the normal brain. However, the diffuse and infiltrative nature of these tumors in the brain parenchyma may pose an exceptional hurdle to successful immunotherapy in patients. Areas of invasive tumor are thought to reside behind an intact blood brain barrier, isolating them from effective immunosurveillance and thereby predisposing the development of "immunologically silent" tumor peninsulas. Therefore, it remains unclear if adoptively transferred T cells can migrate to and mediate regression in areas of invasive GBM. One barrier has been the lack of a preclinical mouse model that accurately recapitulates the growth patterns of human GBM in vivo. Here, we demonstrate that D-270 MG xenografts exhibit the classical features of GBM and produce the diffuse and invasive tumors seen in patients. Using this model, we designed experiments to assess whether T cells expressing third-generation chimeric antigen receptors (CARs) targeting the tumor-specific mutation of the epidermal growth factor receptor, EGFRvIII, would localize to and treat invasive intracerebral GBM. EGFRvIII-targeted CAR (EGFRvIII+ CAR) T cells demonstrated in vitro EGFRvIII antigen-specific recognition and reactivity to the D-270 MG cell line, which naturally expresses EGFRvIII. Moreover, when administered systemically, EGFRvIII+ CAR T cells localized to areas of invasive tumor, suppressed tumor growth, and enhanced survival of mice with established intracranial D-270 MG tumors. Together, these data demonstrate that systemically administered T cells are capable of migrating to the invasive edges of GBM to mediate antitumor efficacy and tumor regression.Item Open Access G-protein-coupled receptor genes as protooncogenes: constitutively activating mutation of the alpha 1B-adrenergic receptor enhances mitogenesis and tumorigenicity.(Proc Natl Acad Sci U S A, 1991-12-15) Allen, LF; Lefkowitz, RJ; Caron, MG; Cotecchia, SThe alpha 1B-adrenergic receptor (alpha 1B-ADR) is a member of the G-protein-coupled family of transmembrane receptors. When transfected into Rat-1 and NIH 3T3 fibroblasts, this receptor induces focus formation in an agonist-dependent manner. Focus-derived, transformed fibroblasts exhibit high levels of functional alpha 1B-ADR expression, demonstrate a catecholamine-induced enhancement in the rate of cellular proliferation, and are tumorigenic when injected into nude mice. Induction of neoplastic transformation by the alpha 1B-ADR, therefore, identifies this normal cellular gene as a protooncogene. Mutational alteration of this receptor can lead to activation of this protooncogene, resulting in an enhanced ability of agonist to induce focus formation with a decreased latency and quantitative increase in transformed foci. In contrast to cells expressing the wild-type alpha 1B-ADR, focus formation in "oncomutant"-expressing cell lines appears constitutively activated with the generation of foci in unstimulated cells. Further, these cell lines exhibit near-maximal rates of proliferation even in the absence of catecholamine supplementation. They also demonstrate an enhanced ability for tumor generation in nude mice with a decreased period of latency compared with cells expressing the wild-type receptor. Thus, the alpha 1B-ADR gene can, when overexpressed and activated, function as an oncogene inducing neoplastic transformation. Mutational alteration of this receptor gene can result in the activation of this protooncogene, enhancing its oncogenic potential. These findings suggest that analogous spontaneously occurring mutations in this class of receptor proteins could play a key role in the induction or progression of neoplastic transformation and atherosclerosis.Item Open Access Localisation of [131I]MIBG in nude mice bearing SK-N-SH human neuroblastoma xenografts: effect of specific activity.(Br J Cancer, 1996-05) Vaidyanathan, G; Friedman, HS; Keir, ST; Zalutsky, MRThe biodistribution of no-carrier-added (n.c.a.) meta-[131I]iodobenzylguanidine ([131I]MIBG) and that prepared by the standard isotopic exchange method were compared in athymic mice bearing SK-N-SH human neuroblastoma xenografts. No advantage in tumour uptake was observed for the n.c.a. preparation. BALB/c nu/nu mice exhibited lower uptake in highly innervated normal tissues (heart and adrenals) than normal BALB/c mice. In another experiment, the distribution of n.c.a. [131I]MIBG in the absence or presence (3-9 micrograms) of MIBG carrier was determined. At both 4 h and 24 h, the heart uptake was reduced by a factor of 1.5 even at a dose of 3 micrograms MIBG. Tumour uptake was not significantly altered by various amounts of unlabelled MIBG at either time point.Item Open Access M-HIFU inhibits tumor growth, suppresses STAT3 activity and enhances tumor specific immunity in a transplant tumor model of prostate cancer.(PLoS One, 2012) Huang, Xiaoyi; Yuan, Fang; Liang, Meihua; Lo, Hui-Wen; Shinohara, Mari L; Robertson, Cary; Zhong, PeiOBJECTIVE: In this study, we explored the use of mechanical high intensity focused ultrasound (M-HIFU) as a neo-adjuvant therapy prior to surgical resection of the primary tumor. We also investigated the role of signal transducer and activator of transcription 3 (STAT3) in M-HIFU elicited anti-tumor immune response using a transplant tumor model of prostate cancer. METHODS: RM-9, a mouse prostate cancer cell line with constitutively activated STAT3, was inoculated subcutaneously in C57BL/6J mice. The tumor-bearing mice (with a maximum tumor diameter of 5∼6 mm) were treated by M-HIFU or sham exposure two days before surgical resection of the primary tumor. Following recovery, if no tumor recurrence was observed in 30 days, tumor rechallenge was performed. The growth of the rechallenged tumor, survival rate and anti-tumor immune response of the animal were evaluated. RESULTS: No tumor recurrence and distant metastasis were observed in both treatment groups employing M-HIFU + surgery and surgery alone. However, compared to surgery alone, M-HIFU combined with surgery were found to significantly inhibit the growth of rechallenged tumors, down-regulate intra-tumoral STAT3 activities, increase cytotoxic T cells in spleens and tumor draining lymph nodes (TDLNs), and improve the host survival. Furthermore, M-HIFU combined with surgery was found to significantly decrease the level of immunosuppression with concomitantly increased number and activities of dendritic cells, compared to surgery alone. CONCLUSION: Our results demonstrate that M-HIFU can inhibit STAT3 activities, and when combined synergistically with surgery, may provide a novel and promising strategy for the treatment of prostate cancers.Item Open Access Melanoma-Derived Wnt5a Promotes Local Dendritic-Cell Expression of IDO and Immunotolerance: Opportunities for Pharmacologic Enhancement of Immunotherapy.(Cancer Immunol Res, 2015-09) Holtzhausen, Alisha; Zhao, Fei; Evans, Kathy S; Tsutsui, Masahito; Orabona, Ciriana; Tyler, Douglas S; Hanks, Brent AThe β-catenin signaling pathway has been demonstrated to promote the development of a tolerogenic dendritic cell (DC) population capable of driving regulatory T-cell (Treg) differentiation. Further studies have implicated tolerogenic DCs in promoting carcinogenesis in preclinical models. The molecular mechanisms underlying the establishment of immune tolerance by this DC population are poorly understood, and the methods by which developing cancers can co-opt this pathway to subvert immune surveillance are currently unknown. This work demonstrates that melanoma-derived Wnt5a ligand upregulates the durable expression and activity of the indoleamine 2,3-dioxygenase-1 (IDO) enzyme by local DCs in a manner that depends upon the β-catenin signaling pathway. These data indicate that Wnt5a-conditioned DCs promote the differentiation of Tregs in an IDO-dependent manner, and that this process serves to suppress melanoma immune surveillance. We further show that the genetic silencing of the PORCN membrane-bound O-acyl transferase, which is necessary for melanoma Wnt ligand secretion, enhances antitumor T-cell immunity, and that the pharmacologic inhibition of this enzyme synergistically suppresses melanoma progression when combined with anti-CTLA-4 antibody therapy. Finally, our data suggest that β-catenin signaling activity, based on a target gene expression profile that includes IDO in human sentinel lymph node-derived DCs, is associated with melanoma disease burden and diminished progression-free survival. This work implicates the Wnt-β-catenin signaling pathway as a novel therapeutic target in the melanoma immune microenvironment and demonstrates the potential impact of manipulating DC function as a strategy for optimizing tumor immunotherapy.Item Open Access MicroRNA antagonism of the picornaviral life cycle: alternative mechanisms of interference.(PLoS Pathog, 2010-03-19) Kelly, Elizabeth J; Hadac, Elizabeth M; Cullen, Bryan R; Russell, Stephen JIn addition to modulating the function and stability of cellular mRNAs, microRNAs can profoundly affect the life cycles of viruses bearing sequence complementary targets, a finding recently exploited to ameliorate toxicities of vaccines and oncolytic viruses. To elucidate the mechanisms underlying microRNA-mediated antiviral activity, we modified the 3' untranslated region (3'UTR) of Coxsackievirus A21 to incorporate targets with varying degrees of homology to endogenous microRNAs. We show that microRNAs can interrupt the picornavirus life-cycle at multiple levels, including catalytic degradation of the viral RNA genome, suppression of cap-independent mRNA translation, and interference with genome encapsidation. In addition, we have examined the extent to which endogenous microRNAs can suppress viral replication in vivo and how viruses can overcome this inhibition by microRNA saturation in mouse cancer models.Item Open Access Modulation of murine breast tumor vascularity, hypoxia and chemotherapeutic response by exercise.(J Natl Cancer Inst, 2015-05) Betof, Allison S; Lascola, Christopher D; Weitzel, Douglas; Landon, Chelsea; Scarbrough, Peter M; Devi, Gayathri R; Palmer, Gregory; Jones, Lee W; Dewhirst, Mark WExercise has been shown to improve postischemia perfusion of normal tissues; we investigated whether these effects extend to solid tumors. Estrogen receptor-negative (ER-, 4T1) and ER+ (E0771) tumor cells were implanted orthotopically into syngeneic mice (BALB/c, N = 11-12 per group) randomly assigned to exercise or sedentary control. Tumor growth, perfusion, hypoxia, and components of the angiogenic and apoptotic cascades were assessed by MRI, immunohistochemistry, western blotting, and quantitative polymerase chain reaction and analyzed with one-way and repeated measures analysis of variance and linear regression. All statistical tests were two-sided. Exercise statistically significantly reduced tumor growth and was associated with a 1.4-fold increase in apoptosis (sedentary vs exercise: 1544 cells/mm(2), 95% CI = 1223 to 1865 vs 2168 cells/mm(2), 95% CI = 1620 to 2717; P = .048), increased microvessel density (P = .004), vessel maturity (P = .006) and perfusion, and reduced intratumoral hypoxia (P = .012), compared with sedentary controls. We also tested whether exercise could improve chemotherapy (cyclophosphamide) efficacy. Exercise plus chemotherapy prolonged growth delay compared with chemotherapy alone (P < .001) in the orthotopic 4T1 model (n = 17 per group). Exercise is a potential novel adjuvant treatment of breast cancer.Item Open Access Tocopherol-associated protein suppresses prostate cancer cell growth by inhibition of the phosphoinositide 3-kinase pathway.(Cancer research, 2005-11) Ni, Jing; Wen, Xingqiao; Yao, Jorge; Chang, Hong-Chiang; Yin, Yi; Zhang, Min; Xie, Shaozhen; Chen, Ming; Simons, Brenna; Chang, Philip; di Sant'Agnese, Anthony; Messing, Edward M; Yeh, ShuyuanEpidemiologic studies suggested that vitamin E has a protective effect against prostate cancer. We showed here that tocopherol-associated protein (TAP), a vitamin E-binding protein, promoted vitamin E uptake and facilitated vitamin E antiproliferation effect in prostate cancer cells. Interestingly, without vitamin E treatment, overexpression of TAP in prostate cancer cells significantly suppressed cell growth; knockdown of endogenous TAP by TAP small interfering RNA (siRNA) in nonmalignant prostate HPr-1 cells increased cell growth. Further mechanism dissection studies suggested that the tumor suppressor function of TAP was via down-regulation of phosphoinositide 3-kinase (PI3K)/Akt signaling, but not by modulating cell cycle arrest or androgen receptor signaling. Immunoprecipitation results indicated that TAP inhibited the interaction of PI3K subunits, p110 with p85, and subsequently reduced Akt activity. Constitutively active Akt could negate the TAP-suppressive activity on prostate cancer cell growth. Moreover, stable transfection of TAP in LNCaP cells suppressed LNCaP tumor incidence and growth rate in nude mice. Furthermore, TAP mRNA and protein expression levels were significantly down-regulated in human prostate cancer tissue samples compared with benign prostate tissues as measured by reverse transcription-PCR, in situ hybridization, and immunohistochemistry. Together, our data suggest that TAP not only mediates vitamin E absorption to facilitate vitamin E antiproliferation effect in prostate cancer cells, but also functions like a tumor suppressor gene to control cancer cell viability through a non-vitamin E manner. Therefore, TAP may represent a new prognostic marker for prostate cancer progression.Item Open Access Type III TGF-β receptor downregulation generates an immunotolerant tumor microenvironment.(J Clin Invest, 2013-09) Hanks, Brent A; Holtzhausen, Alisha; Evans, Katherine S; Jamieson, Rebekah; Gimpel, Petra; Campbell, Olivia M; Hector-Greene, Melissa; Sun, Lihong; Tewari, Alok; George, Amanda; Starr, Mark; Nixon, Andrew B; Augustine, Christi; Beasley, Georgia; Tyler, Douglas S; Osada, Takayu; Morse, Michael A; Ling, Leona; Lyerly, H Kim; Blobe, Gerard CCancers subvert the host immune system to facilitate disease progression. These evolved immunosuppressive mechanisms are also implicated in circumventing immunotherapeutic strategies. Emerging data indicate that local tumor-associated DC populations exhibit tolerogenic features by promoting Treg development; however, the mechanisms by which tumors manipulate DC and Treg function in the tumor microenvironment remain unclear. Type III TGF-β receptor (TGFBR3) and its shed extracellular domain (sTGFBR3) regulate TGF-β signaling and maintain epithelial homeostasis, with loss of TGFBR3 expression promoting progression early in breast cancer development. Using murine models of breast cancer and melanoma, we elucidated a tumor immunoevasion mechanism whereby loss of tumor-expressed TGFBR3/sTGFBR3 enhanced TGF-β signaling within locoregional DC populations and upregulated both the immunoregulatory enzyme indoleamine 2,3-dioxygenase (IDO) in plasmacytoid DCs and the CCL22 chemokine in myeloid DCs. Alterations in these DC populations mediated Treg infiltration and the suppression of antitumor immunity. Our findings provide mechanistic support for using TGF-β inhibitors to enhance the efficacy of tumor immunotherapy, indicate that sTGFBR3 levels could serve as a predictive immunotherapy biomarker, and expand the mechanisms by which TGFBR3 suppresses cancer progression to include effects on the tumor immune microenvironment.