Browsing by Subject "Neoplastic Stem Cells"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Open Access A miR-34a-Numb Feedforward Loop Triggered by Inflammation Regulates Asymmetric Stem Cell Division in Intestine and Colon Cancer.(Cell Stem Cell, 2016-02-04) Bu, Pengcheng; Wang, Lihua; Chen, Kai-Yuan; Srinivasan, Tara; Murthy, Preetish Kadur Lakshminarasimha; Tung, Kuei-Ling; Varanko, Anastasia Kristine; Chen, Huanhuan Joyce; Ai, Yiwei; King, Sarah; Lipkin, Steven M; Shen, XilingEmerging evidence suggests that microRNAs can initiate asymmetric division, but whether microRNA and protein cell fate determinants coordinate with each other remains unclear. Here, we show that miR-34a directly suppresses Numb in early-stage colon cancer stem cells (CCSCs), forming an incoherent feedforward loop (IFFL) targeting Notch to separate stem and non-stem cell fates robustly. Perturbation of the IFFL leads to a new intermediate cell population with plastic and ambiguous identity. Lgr5+ mouse intestinal/colon stem cells (ISCs) predominantly undergo symmetric division but turn on asymmetric division to curb the number of ISCs when proinflammatory response causes excessive proliferation. Deletion of miR-34a inhibits asymmetric division and exacerbates Lgr5+ ISC proliferation under such stress. Collectively, our data indicate that microRNA and protein cell fate determinants coordinate to enhance robustness of cell fate decision, and they provide a safeguard mechanism against stem cell proliferation induced by inflammation or oncogenic mutation.Item Open Access B7-H3-redirected chimeric antigen receptor T cells target glioblastoma and neurospheres.(EBioMedicine, 2019-09) Nehama, Dean; Di Ianni, Natalia; Musio, Silvia; Du, Hongwei; Patané, Monica; Pollo, Bianca; Finocchiaro, Gaetano; Park, James JH; Dunn, Denise E; Edwards, Drake S; Damrauer, Jeffrey S; Hudson, Hannah; Floyd, Scott R; Ferrone, Soldano; Savoldo, Barbara; Pellegatta, Serena; Dotti, GianpietroBackground
The dismal survival of glioblastoma (GBM) patients urgently calls for the development of new treatments. Chimeric antigen receptor T (CAR-T) cells are an attractive strategy, but preclinical and clinical studies in GBM have shown that heterogeneous expression of the antigens targeted so far causes tumor escape, highlighting the need for the identification of new targets. We explored if B7-H3 is a valuable target for CAR-T cells in GBM.Methods
We compared mRNA expression of antigens in GBM using TCGA data, and validated B7-H3 expression by immunohistochemistry. We then tested the antitumor activity of B7-H3-redirected CAR-T cells against GBM cell lines and patient-derived GBM neurospheres in vitro and in xenograft murine models.Findings
B7-H3 mRNA and protein are overexpressed in GBM relative to normal brain in all GBM subtypes. Of the 46 specimens analyzed by immunohistochemistry, 76% showed high B7-H3 expression, 22% had detectable, but low B7-H3 expression and 2% were negative, as was normal brain. All 20 patient-derived neurospheres showed ubiquitous B7-H3 expression. B7-H3-redirected CAR-T cells effectively targeted GBM cell lines and neurospheres in vitro and in vivo. No significant differences were found between CD28 and 4-1BB co-stimulation, although CD28-co-stimulated CAR-T cells released more inflammatory cytokines.Interpretation
We demonstrated that B7-H3 is highly expressed in GBM specimens and neurospheres that contain putative cancer stem cells, and that B7-H3-redirected CAR-T cells can effectively control tumor growth. Therefore, B7-H3 represents a promising target in GBM. FUND: Alex's Lemonade Stand Foundation; Il Fondo di Gio Onlus; National Cancer Institute; Burroughs Wellcome Fund.Item Restricted c-Myc is required for maintenance of glioma cancer stem cells.(PLoS One, 2008) Wang, J; Wang, H; Li, Z; Wu, Q; Lathia, JD; McLendon, RE; Hjelmeland, AB; Rich, JNBACKGROUND: Malignant gliomas rank among the most lethal cancers. Gliomas display a striking cellular heterogeneity with a hierarchy of differentiation states. Recent studies support the existence of cancer stem cells in gliomas that are functionally defined by their capacity for extensive self-renewal and formation of secondary tumors that phenocopy the original tumors. As the c-Myc oncoprotein has recognized roles in normal stem cell biology, we hypothesized that c-Myc may contribute to cancer stem cell biology as these cells share characteristics with normal stem cells. METHODOLOGY/PRINCIPAL FINDINGS: Based on previous methods that we and others have employed, tumor cell populations were enriched or depleted for cancer stem cells using the stem cell marker CD133 (Prominin-1). We characterized c-Myc expression in matched tumor cell populations using real time PCR, immunoblotting, immunofluorescence and flow cytometry. Here we report that c-Myc is highly expressed in glioma cancer stem cells relative to non-stem glioma cells. To interrogate the significance of c-Myc expression in glioma cancer stem cells, we targeted its expression using lentivirally transduced short hairpin RNA (shRNA). Knockdown of c-Myc in glioma cancer stem cells reduced proliferation with concomitant cell cycle arrest in the G(0)/G(1) phase and increased apoptosis. Non-stem glioma cells displayed limited dependence on c-Myc expression for survival and proliferation. Further, glioma cancer stem cells with decreased c-Myc levels failed to form neurospheres in vitro or tumors when xenotransplanted into the brains of immunocompromised mice. CONCLUSIONS/SIGNIFICANCE: These findings support a central role of c-Myc in regulating proliferation and survival of glioma cancer stem cells. Targeting core stem cell pathways may offer improved therapeutic approaches for advanced cancers.Item Open Access Targeting A20 decreases glioma stem cell survival and tumor growth.(PLoS Biol, 2010-02-23) Hjelmeland, AB; Wu, Q; Wickman, S; Eyler, C; Heddleston, J; Shi, Q; Lathia, JD; Macswords, J; Lee, J; McLendon, RE; Rich, JNGlioblastomas are deadly cancers that display a functional cellular hierarchy maintained by self-renewing glioblastoma stem cells (GSCs). GSCs are regulated by molecular pathways distinct from the bulk tumor that may be useful therapeutic targets. We determined that A20 (TNFAIP3), a regulator of cell survival and the NF-kappaB pathway, is overexpressed in GSCs relative to non-stem glioblastoma cells at both the mRNA and protein levels. To determine the functional significance of A20 in GSCs, we targeted A20 expression with lentiviral-mediated delivery of short hairpin RNA (shRNA). Inhibiting A20 expression decreased GSC growth and survival through mechanisms associated with decreased cell-cycle progression and decreased phosphorylation of p65/RelA. Elevated levels of A20 in GSCs contributed to apoptotic resistance: GSCs were less susceptible to TNFalpha-induced cell death than matched non-stem glioma cells, but A20 knockdown sensitized GSCs to TNFalpha-mediated apoptosis. The decreased survival of GSCs upon A20 knockdown contributed to the reduced ability of these cells to self-renew in primary and secondary neurosphere formation assays. The tumorigenic potential of GSCs was decreased with A20 targeting, resulting in increased survival of mice bearing human glioma xenografts. In silico analysis of a glioma patient genomic database indicates that A20 overexpression and amplification is inversely correlated with survival. Together these data indicate that A20 contributes to glioma maintenance through effects on the glioma stem cell subpopulation. Although inactivating mutations in A20 in lymphoma suggest A20 can act as a tumor suppressor, similar point mutations have not been identified through glioma genomic sequencing: in fact, our data suggest A20 may function as a tumor enhancer in glioma through promotion of GSC survival. A20 anticancer therapies should therefore be viewed with caution as effects will likely differ depending on the tumor type.Item Open Access The role of stem cells in airway repair: implications for the origins of lung cancer.(Chin J Cancer, 2013-02) Mulvihill, Michael S; Kratz, Johannes R; Pham, Patrick; Jablons, David M; He, BiaoLung cancer is the leading cause of cancer-related deaths worldwide. Recently, advancements in our ability to identify and study stem cell populations in the lung have helped researchers to elucidate the central role that cells with stem cell-like properties may have in lung tumorigenesis. Much of this research has focused on the use of the airway repair model to study response to injury. In this review, we discuss the primary evidence of the role that cancer stem cells play in lung cancer development. The implications of a stem cell origin of lung cancer are reviewed, and the importance of ongoing research to identify novel therapeutic and prognostic targets is reiterated.