Browsing by Subject "Neuroprotective Agents"
Now showing 1 - 17 of 17
Results Per Page
Sort Options
Item Open Access A phase I/IIa clinical trial of a recombinant Rho protein antagonist in acute spinal cord injury.(Journal of neurotrauma, 2011-05) Fehlings, Michael G; Theodore, Nicholas; Harrop, James; Maurais, Gilles; Kuntz, Charles; Shaffrey, Chris I; Kwon, Brian K; Chapman, Jens; Yee, Albert; Tighe, Allyson; McKerracher, LisaMultiple lines of evidence have validated the Rho pathway as important in controlling the neuronal response to growth inhibitory proteins after central nervous system (CNS) injury. A drug called BA-210 (trademarked as Cethrin(®)) blocks activation of Rho and has shown promise in pre-clinical animal studies in being used to treat spinal cord injury (SCI). This is a report of a Phase I/IIa clinical study designed to test the safety and tolerability of the drug, and the neurological status of patients following the administration of a single dose of BA-210 applied during surgery following acute SCI. Patients with thoracic (T2-T12) or cervical (C4-T1) SCI were sequentially recruited for this dose-ranging (0.3 mg to 9 mg Cethrin), multi-center study of 48 patients with complete American Spinal Injury Association assessment (ASIA) A. Vital signs; clinical laboratory tests; computed tomography (CT) scans of the spine, head, and abdomen; magnetic resonance imaging (MRI) of the spine, and ASIA assessment were performed in the pre-study period and in follow-up periods out to 1 year after treatment. The treatment-emergent adverse events that were reported were typical for a population of acute SCI patients, and no serious adverse events were attributed to the drug. The pharmacokinetic analysis showed low levels of systemic exposure to the drug, and there was high inter-patient variability. Changes in ASIA motor scores from baseline were low across all dose groups in thoracic patients (1.8±5.1) and larger in cervical patients (18.6±19.3). The largest change in motor score was observed in the cervical patients treated with 3 mg of Cethrin in whom a 27.3±13.3 point improvement in ASIA motor score at 12 months was observed. Approximately 6% of thoracic patients converted from ASIA A to ASIA C or D compared to 31% of cervical patients and 66% for the 3-mg cervical cohort. Although the patient numbers are small, the observed motor recovery in this open-label trial suggests that BA-210 may increase neurological recovery after complete SCI. Further clinical trials with Cethrin in SCI patients are planned, to establish evidence of efficacy.Item Open Access A prospective, multicenter, phase I matched-comparison group trial of safety, pharmacokinetics, and preliminary efficacy of riluzole in patients with traumatic spinal cord injury.(Journal of neurotrauma, 2014-02) Grossman, Robert G; Fehlings, Michael G; Frankowski, Ralph F; Burau, Keith D; Chow, Diana SL; Tator, Charles; Teng, Angela; Toups, Elizabeth G; Harrop, James S; Aarabi, Bizhan; Shaffrey, Christopher I; Johnson, Michele M; Harkema, Susan J; Boakye, Maxwell; Guest, James D; Wilson, Jefferson RA prospective, multicenter phase I trial was undertaken by the North American Clinical Trials Network (NACTN) to investigate the pharmacokinetics and safety of, as well as obtain pilot data on, the effects of riluzole on neurological outcome in acute spinal cord injury (SCI). Thirty-six patients, with ASIA impairment grades A-C (28 cervical and 8 thoracic) were enrolled at 6 NACTN sites between April 2010 and June 2011. Patients received 50 mg of riluzole PO/NG twice-daily, within 12 h of SCI, for 14 days. Peak and trough plasma concentrations were quantified on days 3 and 14. Peak plasma concentration (Cmax) and systemic exposure to riluzole varied significantly between patients. On the same dose basis, Cmax did not reach levels comparable to those in patients with amyotrophic lateral sclerosis. Riluzole plasma levels were significantly higher on day 3 than on day 14, resulting from a lower clearance and a smaller volume of distribution on day 3. Rates of medical complications, adverse events, and progression of neurological status were evaluated by comparison with matched patients in the NACTN SCI Registry. Medical complications in riluzole-treated patients occurred with incidences similar to those in patients in the comparison group. Mild-to-moderate increase in liver enzyme and bilirubin levels were found in 14-70% of patients for different enzymes. Three patients had borderline severe elevations of enzymes. No patient had elevated bilirubin on day 14 of administration of riluzole. There were no serious adverse events related to riluzole and no deaths. The mean motor score of 24 cervical injury riluzole-treated patients gained 31.2 points from admission to 90 days, compared to 15.7 points for 26 registry patients, a 15.5-point difference (p=0.021). Patients with cervical injuries treated with riluzole had more-robust conversions of impairment grades to higher grades than the comparison group.Item Open Access Activation of the ATF6 (Activating Transcription Factor 6) Signaling Pathway in Neurons Improves Outcome After Cardiac Arrest in Mice.(Journal of the American Heart Association, 2021-06-11) Shen, Yuntian; Li, Ran; Yu, Shu; Zhao, Qiang; Wang, Zhuoran; Sheng, Huaxin; Yang, WeiBackground Ischemia/reperfusion injury impairs proteostasis, and triggers adaptive cellular responses, such as the unfolded protein response (UPR), which functions to restore endoplasmic reticulum homeostasis. After cardiac arrest (CA) and resuscitation, the UPR is activated in various organs including the brain. However, the role of the UPR in CA has remained largely unknown. Here we aimed to investigate effects of activation of the ATF6 (activating transcription factor 6) UPR branch in CA. Methods and Results Conditional and inducible sATF6-KI (short-form ATF6 knock-in) mice and a selective ATF6 pathway activator 147 were used. CA was induced in mice by KCl injection, followed by cardiopulmonary resuscitation. We first found that neurologic function was significantly improved, and neuronal damage was mitigated after the ATF6 pathway was activated in neurons of sATF6-KI mice subjected to CA/cardiopulmonary resuscitation. Further RNA sequencing analysis indicated that such beneficial effects were likely attributable to increased expression of pro-proteostatic genes regulated by ATF6. Especially, key components of the endoplasmic reticulum-associated degradation process, which clears potentially toxic unfolded/misfolded proteins in the endoplasmic reticulum, were upregulated in the sATF6-KI brain. Accordingly, the CA-induced increase in K48-linked polyubiquitin in the brain was higher in sATF6-KI mice relative to control mice. Finally, CA outcome, including the survival rate, was significantly improved in mice treated with compound 147. Conclusions This is the first experimental study to determine the role of the ATF6 UPR branch in CA outcome. Our data indicate that the ATF6 UPR branch is a prosurvival pathway and may be considered as a therapeutic target for CA.Item Open Access Argon Inhalation for 24 Hours After Onset of Permanent Focal Cerebral Ischemia in Rats Provides Neuroprotection and Improves Neurologic Outcome.(Critical care medicine, 2019-08) Ma, Shuang; Chu, Dongmei; Li, Litao; Creed, Jennifer A; Ryang, Yu-Mi; Sheng, Huaxin; Yang, Wei; Warner, David S; Turner, Dennis A; Hoffmann, UlrikeObjectives
We tested the hypothesis that prolonged inhalation of 70% argon for 24 hours after in vivo permanent or temporary stroke provides neuroprotection and improves neurologic outcome and overall recovery after 7 days.Design
Controlled, randomized, double-blinded laboratory study.Setting
Animal research laboratories.Subjects
Adult Wistar male rats (n = 110).Interventions
Rats were subjected to permanent or temporary focal cerebral ischemia via middle cerebral artery occlusion, followed by inhalation of 70% argon or nitrogen in 30% oxygen for 24 hours. On postoperative day 7, a 48-point neuroscore and histologic lesion size were assessed.Measurements and main results
After argon inhalation for 24 hours immediately following "severe permanent ischemia" induction, neurologic outcome (neuroscore, p = 0.034), overall recovery (body weight, p = 0.02), and infarct volume (total infarct volume, p = 0.0001; cortical infarct volume, p = 0.0003; subcortical infarct volume, p = 0.0001) were significantly improved. When 24-hour argon treatment was delayed for 2 hours after permanent stroke induction or until after postischemic reperfusion treatment, neurologic outcomes remained significantly improved (neuroscore, p = 0.043 and p = 0.014, respectively), as was overall recovery (body weight, p = 0.015), compared with nitrogen treatment. However, infarct volume and 7-day mortality were not significantly reduced when argon treatment was delayed.Conclusions
Neurologic outcome (neuroscore), overall recovery (body weight), and infarct volumes were significantly improved after 24-hour inhalation of 70% argon administered immediately after severe permanent stroke induction. Neurologic outcome and overall recovery were also significantly improved even when argon treatment was delayed for 2 hours or until after reperfusion.Item Open Access Chronic spinal cord electrical stimulation protects against 6-hydroxydopamine lesions.(Scientific reports, 2014-01-23) Yadav, Amol P; Fuentes, Romulo; Zhang, Hao; Vinholo, Thais; Wang, Chi-Han; Freire, Marco Aurelio M; Nicolelis, Miguel ALAlthough L-dopa continues to be the gold standard for treating motor symptoms of Parkinson's disease (PD), it presents long-term complications. Deep brain stimulation is effective, but only a small percentage of idiopathic PD patients are eligible. Based on results in animal models and a handful of patients, dorsal column stimulation (DCS) has been proposed as a potential therapy for PD. To date, the long-term effects of DCS in animal models have not been quantified. Here, we report that DCS applied twice a week in rats treated with bilateral 6-OHDA striatal infusions led to a significant improvement in symptoms. DCS-treated rats exhibited a higher density of dopaminergic innervation in the striatum and higher neuronal cell count in the substantia nigra pars compacta compared to a control group. These results suggest that DCS has a chronic therapeutical and neuroprotective effect, increasing its potential as a new clinical option for treating PD patients.Item Open Access Longitudinal Impact of Acute Spinal Cord Injury on Clinical Pharmacokinetics of Riluzole, a Potential Neuroprotective Agent.(Journal of clinical pharmacology, 2021-09) Nguyen, Ashley; Chow, Diana S-L; Wu, Lei; Teng, Yang Angela; Sarkar, Mahua; Toups, Elizabeth G; Harrop, James S; Schmitt, Karl M; Johnson, Michele M; Guest, James D; Aarabi, Bizhan; Shaffrey, Christopher I; Boakye, Maxwell; Frankowski, Ralph F; Fehlings, Michael G; Grossman, Robert GRiluzole, a benzothiazole sodium channel blocker that received US Food and Drug Administration approval to attenuate neurodegeneration in amyotrophic lateral sclerosis in 1995, was found to be safe and potentially efficacious in a spinal cord injury (SCI) population, as evident in a phase I clinical trial. The acute and progressive nature of traumatic SCI and the complexity of secondary injury processes can alter the pharmacokinetics of therapeutics. A 1-compartment with first-order elimination population pharmacokinetic model for riluzole incorporating time-dependent clearance and volume of distribution was developed from combined data of the phase 1 and the ongoing phase 2/3 trials. This change in therapeutic exposure may lead to a biased estimate of the exposure-response relationship when evaluating therapeutic effects. With the developed model, a rational, optimal dosing scheme can be designed with time-dependent modification that preserves the required therapeutic exposure of riluzole.Item Open Access Neuroprotective efficacy from a lipophilic redox-modulating Mn(III) N-Hexylpyridylporphyrin, MnTnHex-2-PyP: rodent models of ischemic stroke and subarachnoid hemorrhage.(The Journal of pharmacology and experimental therapeutics, 2011-09) Sheng, Huaxin; Spasojevic, Ivan; Tse, Hubert M; Jung, Jin Yong; Hong, Jun; Zhang, Zhiquan; Piganelli, Jon D; Batinic-Haberle, Ines; Warner, David SIntracerebroventricular treatment with redox-regulating Mn(III) N-hexylpyridylporphyrin (MnPorphyrin) is remarkably efficacious in experimental central nervous system (CNS) injury. Clinical development has been arrested because of poor blood-brain barrier penetration. Mn(III) meso-tetrakis (N-hexylpyridinium-2-yl) porphyrin (MnTnHex-2-PyP) was synthesized to include four six-carbon (hexyl) side chains on the core MnPorphyrin structure. This has been shown to increase in vitro lipophilicity 13,500-fold relative to the hydrophilic ethyl analog Mn(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin (MnTE-2-PyP). In normal mice, we found brain MnTnHex-2-PyP accumulation to be ∼9-fold greater than MnTE-2-PyP 24 h after a single intraperitoneal dose. We then evaluated MnTnHex-2-PyP efficacy in outcome-oriented models of focal cerebral ischemia and subarachnoid hemorrhage. For focal ischemia, rats underwent 90-min middle cerebral artery occlusion. Parenteral MnTnHex-2-PyP treatment began 5 min or 6 h after reperfusion onset and continued for 7 days. Neurologic function was improved with both early (P = 0.002) and delayed (P = 0.002) treatment onset. Total infarct size was decreased with both early (P = 0.03) and delayed (P = 0.01) treatment. MnTnHex-2-PyP attenuated nuclear factor κB nuclear DNA binding activity and suppressed tumor necrosis factor-α and interleukin-6 expression. For subarachnoid hemorrhage, mice underwent perforation of the anterior cerebral artery and were treated with intraperitoneal MnTnHex-2-PyP or vehicle for 3 days. Neurologic function was improved (P = 0.02), and vasoconstriction of the anterior cerebral (P = 0.0005), middle cerebral (P = 0.003), and internal carotid (P = 0.015) arteries was decreased by MnTnHex-2-PyP. Side-chain elongation preserved MnPorphyrin redox activity, but improved CNS bioavailability sufficient to cause improved outcome from acute CNS injury, despite delay in parenteral treatment onset of up to 6 h. This advance now allows consideration of MnPorphyrins for treatment of cerebrovascular disease.Item Open Access Pharmacology of riluzole in acute spinal cord injury.(Journal of neurosurgery. Spine, 2012-09) Chow, Diana SL; Teng, Yang; Toups, Elizabeth G; Aarabi, Bizhan; Harrop, James S; Shaffrey, Christopher I; Johnson, Michele M; Boakye, Maxwell; Frankowski, Ralph F; Fehlings, Michael G; Grossman, Robert GObject
The aim of this paper was to characterize individual and population pharmacokinetics of enterally administered riluzole in a Phase 1 clinical trial of riluzole as a neuroprotective agent in adults 18-70 years old with acute spinal cord injury (SCI).Methods
Thirty-five individuals with acute SCI, American Spinal Injury Association Impairment Scale Grades A-C, neurological levels from C-4 to T-12, who were enrolled in the Phase 1 clinical trial sponsored by the North American Clinical Trials Network for Treatment of Spinal Cord Injury, received 50 mg riluzole twice daily for 28 doses. The first dose was administered at a mean of 8.7 ± 2.2 hours postinjury. Trough plasma samples were collected within 1 hour predose, and peak plasma samples were collected 2 hours postdose on Days 3 and 14 of treatment. Riluzole concentrations were quantified by high-performance liquid chromatography assay. The data were analyzed for individual and population pharmacokinetics using basic structural and covariate models. The pharmacokinetic measures studied were the peak concentration (C(max)), trough concentration (C(min)), systemic exposure (AUC(0-12)), clearance (CL/F), and volume of distribution (V_F) normalized by the bioavailability (F).Results
The C(max) and AUC(0-12) achieved in SCI patients were lower than those in ALS patients on the same dose basis, due to a higher CL and larger V. The pharmacokinetics of riluzole (C(max), C(min), AUC(0-12), CL, and V) changed during the acute and subacute phases of SCI during the 14 days of therapy. It was consistently observed in patients at all clinical sites that C(max), C(min), and AUC(0-12) (128.9 ng/ml, 45.6 ng/ml, and 982.0 ng × hr/ml, respectively) were significantly higher on Day 3 than on Day 14 (76.5 ng/ml, 19.1 ng/ml, and 521.0 ng × hr/ml, respectively). These changes resulted from lower CL (49.5 vs 106.2 L/hour) and smaller V (557.1 vs 1297.9/L) on Day 3. No fluid imbalance or cytochrome P 1A2 induction due to concomitant medications was identified during the treatment course to account for such increases in V and CL, respectively. Possible mechanisms underlying these changes are discussed.Conclusions
This is the first report of clinical pharmacokinetics of riluzole in patients with SCI. The C(max) and AUC(0-12) achieved in SCI patients were lower than those in ALS patients on the same dose basis, due to a higher clearance and larger volume of distribution in SCI patients. The finding in SCI patients of an increase in the clearance and distribution of riluzole between the 3rd and 14th days after SCI, with a lower plasma concentration of riluzole on the 14th day, stresses the importance of monitoring changes in drug metabolism after SCI in interpreting the safety and efficacy of therapeutic drugs that are used in clinical trials in SCI. Clinical trial registration no.: NCT00876889.Item Open Access Pioglitazone in early Parkinson's disease: a phase 2, multicentre, double-blind, randomised trial.(Lancet Neurol, 2015-08) Investigators, NINDSNET-PDFS-ZONEBACKGROUND: A systematic assessment of potential disease-modifying compounds for Parkinson's disease concluded that pioglitazone could hold promise for the treatment of patients with this disease. We assessed the effect of pioglitazone on the progression of Parkinson's disease in a multicentre, double-blind, placebo-controlled, futility clinical trial. METHODS: Participants with the diagnosis of early Parkinson's disease on a stable regimen of 1 mg/day rasagiline or 10 mg/day selegiline were randomly assigned (1:1:1) to 15 mg/day pioglitazone, 45 mg/day pioglitazone, or placebo. Investigators were masked to the treatment assignment. Only the statistical centre and the central pharmacy knew the treatment name associated with the randomisation number. The primary outcome was the change in the total Unified Parkinson's Disease Rating Scale (UPDRS) score between the baseline and 44 weeks, analysed by intention to treat. The primary null hypothesis for each dose group was that the mean change in UPDRS was 3 points less than the mean change in the placebo group. The alternative hypothesis (of futility) was that pioglitazone is not meaningfully different from placebo. We rejected the null if there was significant evidence of futility at the one-sided alpha level of 0·10. The study is registered at ClinicalTrials.gov, number NCT01280123. FINDINGS: 210 patients from 35 sites in the USA were enrolled between May 10, 2011, and July 31, 2013. The primary analysis included 72 patients in the 15 mg group, 67 in the 45 mg group, and 71 in the placebo group. The mean total UPDRS change at 44 weeks was 4·42 (95% CI 2·55-6·28) for 15 mg pioglitazone, 5·13 (95% CI 3·17-7·08) for 45 mg pioglitazone, and 6·25 (95% CI 4·35-8·15) for placebo (higher change scores are worse). The mean difference between the 15 mg and placebo groups was -1·83 (80% CI -3·56 to -0·10) and the null hypothesis could not be rejected (p=0·19). The mean difference between the 45 mg and placebo groups was -1·12 (80% CI -2·93 to 0·69) and the null hypothesis was rejected in favour of futility (p=0·09). Planned sensitivity analyses of the primary outcome, using last value carried forward (LVCF) to handle missing data and using the completers' only sample, suggested that the 15 mg dose is also futile (p=0·09 for LVCF, p=0·09 for completers) but failed to reject the null hypothesis for the 45 mg dose (p=0·12 for LVCF, p=0·19 for completers). Six serious adverse events occurred in the 15 mg group, nine in the 45 mg group, and three in the placebo group; none were thought to be definitely or probably related to the study interventions. INTERPRETATION: These findings suggest that pioglitazone at the doses studied here is unlikely to modify progression in early Parkinson's disease. Further study of pioglitazone in a larger trial in patients with Parkinson's disease is not recommended. FUNDING: National Institute of Neurological Disorders and Stroke.Item Open Access Quality control autophagy: a joint effort of ubiquitin, protein deacetylase and actin cytoskeleton.(Autophagy, 2010-05) Lee, Joo-Yong; Yao, Tso-PangAutophagy has been predominantly studied as a nonselective self-digestion process that recycles macromolecules and produces energy in response to starvation. However, autophagy independent of nutrient status has long been known to exist. Recent evidence suggests that this form of autophagy enforces intracellular quality control by selectively disposing of aberrant protein aggregates and damaged organelles--common denominators in various forms of neurodegenerative diseases. By definition, this form of autophagy, termed quality-control (QC) autophagy, must be different from nutrient-regulated autophagy in substrate selectivity, regulation and function. We have recently identified the ubiquitin-binding deacetylase, HDAC6, as a key component that establishes QC. HDAC6 is not required for autophagy activation per se; rather, it is recruited to ubiquitinated autophagic substrates where it stimulates autophagosome-lysosome fusion by promoting F-actin remodeling in a cortactin-dependent manner. Remarkably, HDAC6 and cortactin are dispensable for starvation-induced autophagy. These findings reveal that autophagosomes associated with QC are molecularly and biochemically distinct from those associated with starvation autophagy, thereby providing a new molecular framework to understand the emerging complexity of autophagy and therapeutic potential of this unique machinery.Item Open Access Riluzole for Degenerative Cervical Myelopathy: A Secondary Analysis of the CSM-PROTECT Trial.(JAMA network open, 2024-06) Fehlings, Michael G; Pedro, Karlo M; Alvi, Mohammed Ali; Badhiwala, Jetan H; Ahn, Henry; Farhadi, H Francis; Shaffrey, Christopher I; Nassr, Ahmad; Mummaneni, Praveen; Arnold, Paul M; Jacobs, W Bradley; Riew, K Daniel; Kelly, Michael; Brodke, Darrel S; Vaccaro, Alexander R; Hilibrand, Alan S; Wilson, Jason; Harrop, James S; Yoon, S Tim; Kim, Kee D; Fourney, Daryl R; Santaguida, Carlo; Massicotte, Eric M; Huang, PengImportance
The modified Japanese Orthopaedic Association (mJOA) scale is the most common scale used to represent outcomes of degenerative cervical myelopathy (DCM); however, it lacks consideration for neck pain scores and neglects the multidimensional aspect of recovery after surgery.Objective
To use a global statistical approach that incorporates assessments of multiple outcomes to reassess the efficacy of riluzole in patients undergoing spinal surgery for DCM.Design, setting, and participants
This was a secondary analysis of prespecified secondary end points within the Efficacy of Riluzole in Surgical Treatment for Cervical Spondylotic Myelopathy (CSM-PROTECT) trial, a multicenter, double-blind, phase 3 randomized clinical trial conducted from January 2012 to May 2017. Adult surgical patients with DCM with moderate to severe myelopathy (mJOA scale score of 8-14) were randomized to receive either riluzole or placebo. The present study was conducted from July to December 2023.Intervention
Riluzole (50 mg twice daily) or placebo for a total of 6 weeks, including 2 weeks prior to surgery and 4 weeks following surgery.Main outcomes and measures
The primary outcome measure was a difference in clinical improvement from baseline to 1-year follow-up, assessed using a global statistical test (GST). The 36-Item Short Form Health Survey Physical Component Score (SF-36 PCS), arm and neck pain numeric rating scale (NRS) scores, American Spinal Injury Association (ASIA) motor score, and Nurick grade were combined into a single summary statistic known as the global treatment effect (GTE).Results
Overall, 290 patients (riluzole group, 141; placebo group, 149; mean [SD] age, 59 [10.1] years; 161 [56%] male) were included. Riluzole showed a significantly higher probability of global improvement compared with placebo at 1-year follow-up (GTE, 0.08; 95% CI, 0.00-0.16; P = .02). A similar favorable global response was seen at 35 days and 6 months (GTE for both, 0.07; 95% CI, -0.01 to 0.15; P = .04), although the results were not statistically significant. Riluzole-treated patients had at least a 54% likelihood of achieving better outcomes at 1 year compared with the placebo group. The ASIA motor score and neck and arm pain NRS combination at 1 year provided the best-fit parsimonious model for detecting a benefit of riluzole (GTE, 0.11; 95% CI, 0.02-0.16; P = .007).Conclusions and relevance
In this secondary analysis of the CSM-PROTECT trial using a global outcome technique, riluzole was associated with improved clinical outcomes in patients with DCM. The GST offered probability-based results capable of representing diverse outcome scales and should be considered in future studies assessing spine surgery outcomes.Item Open Access Riluzole for the treatment of acute traumatic spinal cord injury: rationale for and design of the NACTN Phase I clinical trial.(Journal of neurosurgery. Spine, 2012-09) Fehlings, Michael G; Wilson, Jefferson R; Frankowski, Ralph F; Toups, Elizabeth G; Aarabi, Bizhan; Harrop, James S; Shaffrey, Christopher I; Harkema, Susan J; Guest, James D; Tator, Charles H; Burau, Keith D; Johnson, Michele W; Grossman, Robert GIn the immediate period after traumatic spinal cord injury (SCI) a variety of secondary injury mechanisms combine to gradually expand the initial lesion size, potentially leading to diminished neurological outcomes at long-term follow-up. Riluzole, a benzothiazole drug, which has neuroprotective properties based on sodium channel blockade and mitigation of glutamatergic toxicity, is currently an approved drug that attenuates the extent of neuronal degeneration in patients with amyotrophic lateral sclerosis. Moreover, several preclinical SCI studies have associated riluzole administration with improved functional outcomes and increased neural tissue preservation. Based on these findings, riluzole has attracted considerable interest as a potential neuroprotective drug for the treatment of SCI. Currently, a Phase I trial evaluating the safety and pharmacokinetic profile of riluzole in human SCI patients is being conducted by the North American Clinical Trials Network (NACTN) for Treatment of Spinal Cord Injury. The current review summarizes the existing preclinical and clinical literature on riluzole, provides a detailed description of the Phase I trial, and suggests potential opportunities for future investigation. Clinical trial registration no.: NCT00876889.Item Open Access Safety and efficacy of rivastigmine in adolescents with Down syndrome: long-term follow-up.(J Child Adolesc Psychopharmacol, 2010-12) Heller, James H; Spiridigliozzi, Gail A; Crissman, Blythe G; McKillop, Jane Anne; Yamamoto, Haru; Kishnani, Priya SFollowing the completion of a 20-week, open-label study of the safety and efficacy of liquid rivastigmine for adolescents with Down syndrome, 5 of the 10 adolescents in the clinical trial continued long-term rivastigmine therapy and 5 did not. After an average period of 38 months, all 10 subjects returned for a follow-up assessment to determine the safety and efficacy of long-term rivastigmine use. Rivastigmine was well tolerated and overall health appeared to be unaffected by long-term rivastigmine use. Performance change on cognitive and language measures administered at the termination of the open-label clinical trial was compared between the two groups. No between-group difference in median performance change across the long-term period was found, suggesting that the long-term use of rivastigmine does not improve cognitive and language performance. However, two subjects demonstrated remarkable improvement in adaptive function over the long-term period. Both subjects had received long-term rivastigmine therapy. The discussion addresses the challenge of assessing cognitive change in clinical trials using adolescents with Down syndrome as subjects and the use of group versus individual data to evaluate the relevance of medication effects.Item Open Access Targeting the SUMO pathway for neuroprotection in brain ischaemia.(Stroke and vascular neurology, 2016-09) Yang, Wei; Sheng, Huaxin; Wang, HaichenSmall ubiquitin-like modifier (SUMO) conjugation (SUMOylation) is a post-translational protein modification that modulates almost all major cellular processes, and has been implicated in many human diseases. A growing body of evidence from in vitro and in vivo studies demonstrates that increasing global levels of SUMO conjugated proteins (global SUMOylation) protects cells against ischaemia-induced damage, while suppressing global SUMOylation promotes cell injury after ischaemia. Indeed, SUMOylation has emerged as a potential therapeutic target for neuroprotection in brain ischaemia, including global brain ischaemia and focal brain ischaemia (ischaemic stroke). Here, we summarise findings on the role of SUMOylation in human diseases, brain ischaemia in particular, and review recent developments in drug discovery targeting SUMOylation with a major focus on its neuroprotective applications.Item Open Access Therapeutic Development of Apolipoprotein E Mimetics for Acute Brain Injury: Augmenting Endogenous Responses to Reduce Secondary Injury.(Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics, 2020-04) James, Michael L; Komisarow, Jordan M; Wang, Haichen; Laskowitz, Daniel TOver the last few decades, increasing evidence demonstrates that the neuroinflammatory response is a double-edged sword. Although overly robust inflammatory responses may exacerbate secondary tissue injury, inflammatory processes are ultimately necessary for recovery. Traditional drug discovery often relies on reductionist approaches to isolate and modulate specific intracellular pathways believed to be involved in disease pathology. However, endogenous brain proteins are often pleiotropic in order to regulate neuroinflammation and recovery mechanisms. Thus, a process of "backward translation" aims to harness the adaptive properties of endogenous proteins to promote earlier and greater recovery after acute brain injury. One such endogenous protein is apolipoprotein E (apoE), the primary apolipoprotein produced in the brain. Robust preclinical and clinical evidence demonstrates that endogenous apoE produced within the brain modulates the neuroinflammatory response of the acutely injured brain. Thus, one innovative approach to improve outcomes following acute brain injury is administration of exogenous apoE-mimetic drugs optimized to cross the blood-brain barrier. In particular, one promising apoE mimetic peptide, CN-105, has demonstrated efficacy across a wide variety of preclinical models of brain injury and safety and feasibility in early-phase clinical trials. Preclinical and clinical evidence for apoE's neuroprotective effects and downregulation of neuroinflammatory and the resulting translational therapeutic development strategy for an apoE-based therapeutic are reviewed.Item Open Access Xenon and sevoflurane provide analgesia during labor and fetal brain protection in a perinatal rat model of hypoxia-ischemia.(PloS one, 2012-01) Yang, Ting; Zhuang, Lei; Rei Fidalgo, António M; Petrides, Evgenia; Terrando, Niccolo; Wu, Xinmin; Sanders, Robert D; Robertson, Nicola J; Johnson, Mark R; Maze, Mervyn; Ma, DaqingIt is not possible to identify all pregnancies at risk of neonatal hypoxic-ischemic encephalopathy (HIE). Many women use some form of analgesia during childbirth and some anesthetic agents have been shown to be neuroprotective when used as analgesics at subanesthetic concentrations. In this study we sought to understand the effects of two anesthetic agents with presumptive analgesic activity and known preconditioning-neuroprotective properties (sevoflurane or xenon), in reducing hypoxia-induced brain damage in a model of intrauterine perinatal asphyxia. The analgesic and neuroprotective effects at subanesthetic levels of sevoflurane (0.35%) or xenon (35%) were tested in a rat model of intrauterine perinatal asphyxia. Analgesic effects were measured by assessing maternal behavior and spinal cord dorsal horn neuronal activation using c-Fos. In separate experiments, intrauterine fetal asphyxia was induced four hours after gas exposure; on post-insult day 3 apoptotic cell death was measured by caspase-3 immunostaining in hippocampal neurons and correlated with the number of viable neurons on postnatal day (PND) 7. A separate cohort of pups was nurtured by a surrogate mother for 50 days when cognitive testing with Morris water maze was performed. Both anesthetic agents provided analgesia as reflected by a reduction in the number of stretching movements and decreased c-Fos expression in the dorsal horn of the spinal cord. Both agents also reduced the number of caspase-3 positive (apoptotic) neurons and increased cell viability in the hippocampus at PND7. These acute histological changes were mirrored by improved cognitive function measured remotely after birth on PND 50 compared to control group. Subanesthetic doses of sevoflurane or xenon provided both analgesia and neuroprotection in this model of intrauterine perinatal asphyxia. These data suggest that anesthetic agents with neuroprotective properties may be effective in preventing HIE and should be tested in clinical trials in the future.Item Open Access Xenon neuroprotection in experimental stroke: interactions with hypothermia and intracerebral hemorrhage.(Anesthesiology, 2012-12) Sheng, Siyuan P; Lei, Beilei; James, Michael L; Lascola, Christopher D; Venkatraman, Talaignair N; Jung, Jin Yong; Maze, Mervyn; Franks, Nicholas P; Pearlstein, Robert D; Sheng, Huaxin; Warner, David SBackground
Xenon has been proven to be neuroprotective in experimental brain injury. The authors hypothesized that xenon would improve outcome from focal cerebral ischemia with a delayed treatment onset and prolonged recovery interval.Methods
Rats were subjected to 70 min temporary focal ischemia. Ninety minutes later, rats were treated with 0, 15, 30, or 45% Xe for 20 h or 0 or 30% Xe for 8, 20, or 44 h. Outcome was measured after 7 days. In another experiment, after ischemia, rats were maintained at 37.5° or 36.0°C for 20 h with or without 30% Xe. Outcome was assessed 28 days later. Finally, mice were subjected to intracerebral hemorrhage with or without 30% Xe for 20 h. Brain water content, hematoma volume, rotarod function, and microglial activation were measured.Results
Cerebral infarct sizes (mean±SD) for 0, 15, 30, and 45% Xe were 212±27, 176±55, 160±32, and 198±54 mm, respectively (P=0.023). Neurologic scores (median±interquartile range) followed a similar pattern (P=0.002). Infarct size did not vary with treatment duration, but neurologic score improved (P=0.002) at all xenon exposure durations (8, 20, and 44 h). Postischemic treatment with either 30% Xe or subtherapeutic hypothermia (36°C) had no effect on 28-day outcome. Combination of these interventions provided long-term benefit. Xenon improved intracerebral hemorrhage outcome measures.Conclusion
Xenon improved focal ischemic outcome at 7, but not 28 days postischemia. Xenon combined with subtherapeutic hypothermia produced sustained recovery benefit. Xenon improved intracerebral hemorrhage outcome. Xenon may have potential for clinical stroke therapy under carefully defined conditions.