Browsing by Subject "Neurosecretory Systems"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access A membrane-associated progesterone-binding protein, 25-Dx, is regulated by progesterone in brain regions involved in female reproductive behaviors.(Proc Natl Acad Sci U S A, 2000-11-07) Krebs, CJ; Jarvis, ED; Chan, J; Lydon, JP; Ogawa, S; Pfaff, DWThe ventromedial hypothalamus (VMH) plays a central role in the regulation of the female reproductive behavior lordosis, a behavior dependent upon the sequential activation of receptors for the ovarian steroid hormones estradiol (E) and progesterone (P). These receptors function as transcription factors to alter the expression of target genes. To discover behaviorally relevant genes targeted by E and P in the VMH, we used the differential display PCR to identify messenger RNAs that are differentially expressed in the hypothalamus of ovariectomized (ovx) rats treated with E alone compared with ovariectomized rats treated with E and P. We show here that one interesting mRNA within the hypothalamus that is repressed by P after E priming encodes the protein 25-Dx, the rat homolog of the human membrane-associated P-binding protein Hpr6.6. Neurons in the brain containing the highest levels of 25-Dx are located in several nuclei of the basal forebrain, including the VMH. 25-Dx expression is also higher in the hypothalamus of female P receptor "knockout" mice than in their wild-type littermates. These findings suggest a mechanism in which the activation of nuclear P receptor represses expression of a membrane P receptor, 25-Dx, during lordosis facilitation.Item Open Access Perceived stress and biological risk: is the link stronger in Russians than in Taiwanese and Americans?(Stress, 2013-07) Glei, Dana A; Goldman, Noreen; Shkolnikov, Vladimir M; Jdanov, Dmitri; Shkolnikova, Maria; Vaupel, James W; Weinstein, MaxineAllostatic load theory implies a relationship between exposure to psychological stress and multi-system physiological dysregulation. We used data from population-based samples of men and women in Russia (Moscow; n = 1800; age, mean 68.6 years), Taiwan (n = 1036; 65.6 years) and the United States (US; n = 1054; 58.0 years) -- which are likely to vary widely with respect to levels of stress exposure and biological markers -- to determine the magnitude of the association between perceived stress and physiological dysregulation. The measure of overall dysregulation was based on 15 markers including standard cardiovascular/metabolic risk factors as well as markers of inflammation and neuroendocrine activity. Subjective psychological stress was measured by the perceived stress scale. Only the Moscow sample demonstrated a positive association with overall dysregulation in both sexes. In the US, we found an association among women but not men. Among the Taiwanese, who report the lowest perceived stress, there was no association in women but an unexpected inverse relationship in men. The effects also varied across system-level subscores: the association with perceived stress was most consistent for standard cardiovascular/metabolic factors. Perceived stress was associated with inflammation and neuroendocrine activity in some samples. Although the evidence that perceived stress is the primary source of physiological dysregulation is generally modest, it was stronger in Russia where the level of perceived stress was particularly high. For Russia only, we had information about heart function based on a 24 h ambulatory electrocardiogram; perceived stress was consistently associated with heart rate dysregulation in Russian men and women.