Browsing by Subject "Neutron"
Results Per Page
Sort Options
Item Open Access A Measurement of The Response of A High Purity Germanium Detector to Low-Energy Nuclear Recoils(2022) Li, LongThe Standard model process of Coherent Elastic Neutrino-Nucleus Scattering (CEvNS), which was first predicted by Freedman in 1974, has recently been observed by the COHERENT collaboration on CsI and liquid argon targets. The result is a new way to build a compact neutrino detector which unlocks new channels to test the Standard Model. A semiconductor germanium detector, a technology that has been developed by many dark matter direct detection experiments due to its excellent energy resolution and low-energy thresholds, will also be deployed to ORNL in order to detect CEvNS as part of the next phase of the COHERENT experiment. One of the challenges is to understand the signature of neutrino-induced low-energy nuclear recoils in germanium. A measurement was carried out at the Triangle Universities Nuclear Laboratory (TUNL) to characterize the it response to low-energy nuclear recoils. A quenching factor of 14-20% for nuclear recoil energies between 0.8-4.9 keV in Ge was established. A long predicted smearing effect due to quenching was observed for the first time and estimated to be 0.024 at ~2 keVnr. Finally, the impact of this effect and the quenching factor on the expected CEvNS spectrum of the future Ge deployment is presented.
Item Open Access Collimation of a D-D Neutron Generator for Clinical Implementation of Neutron Stimulated Emission Computed Tomography: a Monte Carlo Study(2016) Fong, GrantThis work is an investigation into collimator designs for a deuterium-deuterium (DD) neutron generator for an inexpensive and compact neutron imaging system that can be implemented in a hospital. The envisioned application is for a spectroscopic imaging technique called neutron stimulated emission computed tomography (NSECT).
Previous NSECT studies have been performed using a Van-de-Graaff accelerator at the Triangle Universities Nuclear Laboratory (TUNL) in Duke University. This facility has provided invaluable research into the development of NSECT. To transition the current imaging method into a clinically feasible system, there is a need for a high-intensity fast neutron source that can produce collimated beams. The DD neutron generator from Adelphi Technologies Inc. is being explored as a possible candidate to provide the uncollimated neutrons. This DD generator is a compact source that produces 2.5 MeV fast neutrons with intensities of 1012 n/s (4π). The neutron energy is sufficient to excite most isotopes of interest in the body with the exception of carbon and oxygen. However, a special collimator is needed to collimate the 4π neutron emission into a narrow beam. This work describes the development and evaluation of a series of collimator designs to collimate the DD generator for narrow beams suitable for NSECT imaging.
A neutron collimator made of high-density polyethylene (HDPE) and lead was modeled and simulated using the GEANT4 toolkit. The collimator was designed as a 52 x 52 x 52 cm3 HDPE block coupled with 1 cm lead shielding. Non-tapering (cylindrical) and tapering (conical) opening designs were modeled into the collimator to permit passage of neutrons. The shape, size, and geometry of the aperture were varied to assess the effects on the collimated neutron beam. Parameters varied were: inlet diameter (1-5 cm), outlet diameter (1-5 cm), aperture diameter (0.5-1.5 cm), and aperture placement (13-39 cm). For each combination of collimator parameters, the spatial and energy distributions of neutrons and gammas were tracked and analyzed to determine three performance parameters: neutron beam-width, primary neutron flux, and the output quality. To evaluate these parameters, the simulated neutron beams are then regenerated for a NSECT breast scan. Scan involved a realistic breast lesion implanted into an anthropomorphic female phantom.
This work indicates potential for collimating and shielding a DD neutron generator for use in a clinical NSECT system. The proposed collimator designs produced a well-collimated neutron beam that can be used for NSECT breast imaging. The aperture diameter showed a strong correlation to the beam-width, where the collimated neutron beam-width was about 10% larger than the physical aperture diameter. In addition, a collimator opening consisting of a tapering inlet and cylindrical outlet allowed greater neutron throughput when compared to a simple cylindrical opening. The tapering inlet design can allow additional neutron throughput when the neck is placed farther from the source. On the other hand, the tapering designs also decrease output quality (i.e. increase in stray neutrons outside the primary collimated beam). All collimators are cataloged in measures of beam-width, neutron flux, and output quality. For a particular NSECT application, an optimal choice should be based on the collimator specifications listed in this work.
Item Open Access Experiments of Search for Neutron Electric Dipole Moment and Spin-Dependent Short-Range Force(2012) Zheng, WangzhiIt is of great importance to identify new sources of discrete symmetry violations because it can explain the baryon number asymmetry of our universe and also test the validity of various models beyond the standard model. Neutron Electric Dipole Moment (nEDM) and short-range force are such candidates for the new sources of P&T violations. A new generation nEDM experiment was proposed in USA in 2002, aiming at improving the current nEDM upperlimit by two orders of magnitude. Polarized 3He is crucial in this experiment and Duke is responsible for the 3He injection, measurements of 3He nuclear magnetic resonance (NMR) signal and some physics properties related to polarized 3He.
A Monte-Carlo simulation is used to simulate the entire 3He injection process in order to study whether polarized 3He can be successfully delivered to the measurement cell. Our simulation result shows that it is achievable to maintain more than 95% polarization after 3He atoms travel through very complicated paths in the presence of non-uniform magnetic fiels.
We also built an apparatus to demonstrate that the 3He precession signal can be measured under the nEDM experimental conditions using the Superconducting Quantum Interference Device (SQUID). Based on the measurement result in our lab, we project that the signal-to-noise ratio in the nEDM experiment will be at least 10.
During this SQUID test, two interesting phenomena were discovered. One is the pressure dependence of the T1 of the polarized 3He which has never been reported before. The other is the discrepancy between the theoretically predicted T2 and the experimentally measured T2 of the 3He precession signal. To investigate these two interesting phenomena, two dedicated experiments were built, and two papers have been published in Physical Review A.
In addition to the nEDM experiment, polarized 3He is also used in the search for the exotic short-range force. The high pressure 3He cell used in this experiment has a very thin window (~250 μm) to maximize the effect from the force. We demonstrate that our new method could improve the current best experimental limit by two orders of magnitude. A rapid communication demonstrating the technique and the result was published in Physical Review D.
Item Open Access Low-dose imaging of liver diseases through neutron stimulated emission computed tomography: Simulations in GEANT4(2013) Agasthya, Greeshma AnanthNeutron stimulated emission computed tomography (NSECT) is a non-invasive, tomographic imaging technique with the ability to locate and quantify elemental concentration in a tissue sample. Previous studies have shown that NSECT has the ability to differentiate between benign and malignant tissue and diagnose liver iron overload while using a neutron beam tomographic acquisition protocol followed by iterative image reconstruction. These studies have shown that moderate concentrations of iron can be detected in the liver with moderate dose levels and long scan times. However, a low-dose, reduced scan time technique to differentiate various liver diseases has not been tested. As with other imaging modalities, the performance of NSECT in detecting different diseases while reducing dose and scan time will depend on the acquisition techniques and parameters that are used to scan the patients. In order to optimize a clinical liver imaging system based on NSECT, it is important to implement low-dose techniques and evaluate their feasibility, sensitivity, specificity and accuracy by analyzing the generated liver images from a patient population. This research work proposes to use Monte-Carlo simulations to optimize a clinical NSECT system for detection, localization, quantification and classification of liver diseases. This project has been divided into three parts; (a) implement two novel acquisition techniques for dose reduction, (b) modify MLEM iterative image reconstruction algorithm to incorporate the new acquisition techniques and (c) evaluate the performance of this combined technique on a simulated patient population.
The two dose-reduction, acquisition techniques that have been implemented are; (i) use of a single angle scanning, multi-detector acquisition system and (ii) the neutron-time resolved imaging (n-TRI) technique. In n-TRI, the NSECT signal has been resolved in time by a function of the speed of the incident neutron beam and this information has been used to locate the liver lesions in the tissue. These changes in the acquisition system have been incorporated and used to modify MLEM iterative image reconstruction algorithm to generate liver images. The liver images are generated from sinograms acquired by the simulated n-TRI based NSECT scanner from a simulated patient population.
The simulated patient population has patients of different sizes, with different liver diseases, multiple lesions with different sizes and locations in the liver. The NSECT images generated from this population have been used to validate the liver imaging system developed in this project. Statistical tests such as ROC and student t-tests have been used to evaluate this system. The overall improvement in dose and scan time as compared to the NSECT tomographic system have been calculated to verify the improvement in the imaging system. The patient dose was calculated by measuring the energy deposited by the neutron beam in the liver and surrounding body tissue. The scan time was calculated by measuring the time required by a neutron source to produce the neutron fluence required to generate a clinically viable NSECT image.
Simulation studies indicate that this NSECT system can detect, locate, quantify and classify liver lesions in different sized patients. The n-TRI imaging technique can detect lesions with wet iron concentration of 0.5 mg/g or higher in liver tissue in patients with 30 cm torso and can quantify lesions at 0.3 ns timing resolution with errors ≤ 17.8%. The NSECT system can localize and classify liver lesions of hemochromatosis, hepatocellular carcinoma, fatty liver tissue and cirrhotic liver tissue based on bulk and trace element concentrations. In a small patient with a torso major axis of 30 cm, the n-TRI based liver imaging technique can localize 91.67% of all lesions and classify lesions with an accuracy of 88.23%. The dose to the small patient is 0.37 mSv a reduction of 39.9% as compared to the NSECT tomographic system and scan times are comparable to that of an abdominal MRI scan. In a bigger patient with a torso major axis of 50cm, the n-TRI based technique can detect 75% of the lesions, while localizing 66.67% of the lesions, the accuracy of classification is 76.47%. The effective dose equivalent delivered to the larger patient is 1.57 mSv for a 68.8% decrease in dose as compared to a tomographic NSECT system.
The research performed for this dissertation has two important outcomes. First, it demonstrates that NSECT has the clinical potential for detection, localization and classification of liver diseases in patients. Second, it provides a validation of the simulation of a novel low-dose liver imaging technique which can be used to guide future development and experimental implementation of the technique.
Item Open Access Measurements of the Absolute Cross Section of the Three-body Photodisintegration of Helium-3 Between E[gamma] = 11.4 MeV and 14.7 MeV at HIGS(2010) Perdue, Brent AndraeMeasurements of the three-body photodisintegration of 3He were performed at the High Intensity &gamma-ray Source (HI&gammaS). Neutrons emitted in this reaction inside a 3He gas target were detected with seven 12.7 cm diameter liquid scintillator detectors. Time-of-flight (TOF) and pulse-shape discrimination (PSD) techniques were used to identify neutron events. The absolute differential cross sections for the 3He(&gamma, n)pp reaction as a function of outgoing neutron scattering angle and energy were determined from the measurements at the incident &gamma-ray energies of 11.4, 12.8, 13.5, and 14.7 MeV to within a precision better than +/- 6 %.
The absolute cross sections at each incident energy are compared to the results of Gorbunov [Gor74], phase space calculations, and state-of-the-art three-body calculations. The inclusion of the Coulomb interaction in the three-body problem has been a long-standing challenge in theoretical nuclear physics. The present experimental data were found to be in good agreement with the state-of-the-art theory, which includes a full treatment of the Coulomb interaction between
the protons in the final state [Del05].
Item Open Access Measurements of the Analyzing Power of Neutron-Helium-3 Elastic Scattering Between 1.60 and 5.54 MeV(2012) Esterline, JamesAn experiment measuring the analyzing power Ay(θ) for neutron–helium-3 (n-3He) elastic scattering over broad angular distributions for a range of incident neutron energies from 1.60 to 5.54 MeV has been conducted at the Triangle Universities Nuclear Laboratory. These measurements represent an effort to resolve the long-standing discrepancy between experiment and theory in low-energy three-nucleon analyzing powers, through the evaluation of analyzing powers in the four-nucleon systems, which are expected to exhibit sensitivities not accessible with fewer nucleons. The present work is described in terms of the experimental setup and data reduction techniques; a comparison of the results with rigorous calculations using both nucleon-nucleon and, as recently has become available, three-nucleon potential models is presented. While a discrepancy between calculation and measurement was observed, at low energies substantially better agreement was achieved than in related measurements of the proton–helium-3 (p-3He) analyzing power, suggesting a sizeable dependence on isospin in the four-nucleon systems.
Item Open Access Neutron Dosimetry of Mice Using Monoenergetic Neutron Beams(2011) Fallin, Brent AlanIn 2009 the researchers at Triangle Universities Nuclear Laboratory (TUNL) participated in a series of experiments with the Radiation Countermeasures Center of Research Excellence (RadCCORE). This thesis project is a component of the research done at TUNL that was partially supported by the RadCCORE collaboration. The primary goals of this work are: (1) to measure the neutron fluence (and hence the dose) from the standard neutron beam source at TUNL delivered to a small animal target to an accuracy of better than ± 10% and (2) to develop techniques for real time monitoring of the absolute dose delivered to small animal targets from neutron beam irradiation. These two projects are interconnected as the development of the real-time monitoring techniques depends on the results of the absolute fluence measurements.
Measuring the absolute neutron beam fluence necessitates the use of a reaction in which the neutron cross section is accurately known over the relevant energy range and a detection technique which is insensitive to gamma-rays or is capable of distinguishing gamma-rays from neutrons. In this work, neutron activation of aluminum and gold foils was used to make absolute measurements of the fast neutron (En ~ 10 MeV) fluence. Neutron activation of gold foils was also used to make a relative measurement of the thermal neutron fluence. The neutrons produced nuclear reactions in the foils, converting a small quantity of the stable atoms in the foils into radioactive ones which subsequently generate gamma-rays in their decay process. The activated foils are then removed from the beam and placed in front of a high-purity germanium (HPGe) detector that measures the energy spectrum of the gamma-rays emitted by the foil. By counting the number of gamma-rays detected over a set time, the incident neutron fluence at the foil location was determined using the known reaction cross sections. The measured neutron fluence was used to calculate the imparted dose to live mouse targets via the muscle tissue neutron kerma factors. Liquid and plastic scintillation detectors were also used to monitor the relative neutron flux in real time during the experiments. These relative detectors were subsequently calibrated using flux results obtained from the foil activation measurements and were used for real time dose monitoring.
The neutron beam produced at TUNL also has an intrinsic gamma component that adds to the dose received by a small animal target. The gamma contribution to imparted dose is generally taken to be around 10% or less for neutron beams created by linear accelerators utilizing the 2H(d,n)3He reaction, but no confirming measurements of this type have been performed at TUNL prior to this work. To verify this claim, an experiment was conducted to quantify the gamma-ray contribution to the target dose at several incident neutron energies and gas cell pressures.
The dosage from the mixed beam was measured using two ionization chambers that have different sensitivities to neutron and gamma radiation. The chambers were placed in the neutron beam, and the total charge induced in the ionization chamber by the mixed radiation field was monitored. The percent gamma-ray contribution to total target dose was calculated utilizing the procedures outlined in AAPM Report No. 7 and Attix.
Using the foil activation technique, the neutron fluence incident on target and dose delivered were measured to within ± 10%. The target dose estimated using the scintillation detectors was found to be accurate to within ± 20%. The results of the ion chamber measurements imply the gamma-ray component of the neutron beam at TUNL contributes less than 5% to the total target dose. Given the large difference in quality factors between gamma-rays (=1) and fast neutrons (~10), the contribution by gamma radiation to the total equivalent dose was determined to be negligible.