Browsing by Subject "Nicotine"
Now showing 1 - 20 of 21
Results Per Page
Sort Options
Item Open Access Acute and chronic glutamate NMDA antagonist treatment attenuates dopamine D1 antagonist-induced reduction of nicotine self-administration in female rats.(Pharmacology, biochemistry, and behavior, 2023-11) Natarajan, Sarabesh; Abass, Grant; Kim, Lucas; Wells, Corinne; Rezvani, Amir H; Levin, Edward DMultiple interacting neural systems are involved in sustaining nicotine reinforcement. We and others have shown that dopamine D1 receptors and glutamate NMDA receptors both play important roles in nicotine reinforcement. Blockade of D1 receptors with the antagonist SCH-23390 (0.02 mg/kg) both acutely and chronically significantly decreased nicotine self-administration in rats. Blockade of NMDA receptors (10 mg/kg) acutely with memantine significantly increased nicotine self-administration, but chronic blockade of NMDA receptors with memantine significantly decreased nicotine self-administration. The current study examined the interactions of acute and chronic administration of SCH-23390 and memantine on nicotine self-administration in female rats. Replicating earlier studies, acute and chronic SCH-23390 significantly decreased nicotine self-administration and memantine had a biphasic effect with acute administration increasing nicotine self-administration and chronic memantine showed a non-significant trend toward decreasing it. However, chronic interaction study showed that memantine significantly attenuated the decrease in nicotine self-administration caused by chronic SCH-23390. These studies provide important information that memantine attenuates the efficacy of D1 antagonist SCH 23390 in reducing nicotine-self-administration. These two drugs do not appear to have mutually potentiating effects to aid tobacco cessation.Item Open Access Acute and chronic interactive treatments of serotonin 5HT2C and dopamine D1 receptor systems for decreasing nicotine self-administration in female rats.(Pharmacology, biochemistry, and behavior, 2019-11) Willette, Blair KA; Nangia, Anica; Howard, Sarah; DiPalma, Devon; McMillan, Collin; Tharwani, Sonum; Evans, Janequia; Wells, Corinne; Slade, Susan; Hall, Brandon J; Rezvani, Amir H; Levin, Edward DA variety of neural systems are involved in the brain bases of tobacco addiction. Animal models of nicotine addiction have helped identify a variety of interacting neural systems involved in the pathophysiology of tobacco addiction. We and others have found that drug treatments affecting many of those neurotransmitter systems significantly decrease nicotine self-administration. These treatments include dopamine D1 receptor antagonist, histamine H1 antagonist, serotonin 5HT2C agonist, glutamate NMDA antagonist, nicotinic cholinergic α4β2 partial agonist and nicotinic cholinergic α3β4 antagonist acting drugs. It may be the case that combining treatments that affect different neural systems underlying addiction may be more efficacious than single drug treatment. In the current study, we tested the interactions of the D1 antagonist SCH-23390 and the serotonin 5HT2c agonist lorcaserin, both of which we have previously shown to significantly reduce nicotine self-administration. In the acute interactions study, both SCH-23390 and lorcaserin significantly reduced nicotine self-administration when given alone and had additive effects when given in combination. In the chronic study, each drug alone caused a significant decrease in nicotine self-administration. No additive effect was seen in combination because SCH-23390 given alone chronically was already highly effective. Chronic administration of the combination was not seen to significantly prolong reduced nicotine self-administration into the post-treatment period. This research shows that unlike lorcaserin and SCH-23390 interactions when given acutely, when given chronically in combination they do not potentiate or prolong each other's effects in reducing nicotine self-administration.Item Open Access Amitifadine, a triple reuptake inhibitor, reduces self-administration of the opiate remifentanil in rats.(Psychopharmacology, 2020-06) Levin, Edward D; Wells, Corinne; Hawkey, Andrew; Holloway, Zade; Blair, Graham; Vierling, Alexander; Ko, Ashley; Pace, Caroline; Modarres, John; McKinney, Anthony; Rezvani, Amir H; Rose, Jed ERationale
A variety of neural systems are involved in drug addiction, and some of these systems are shared across different addictive drugs. We have found several different types of drug treatments that successfully reduce nicotine self-administration.Objectives
The current set of studies is the first in a series to determine if drug treatments that have been found to significantly reduce nicotine self-administration would reduce opiate self-administration.Methods
Amitifadine, a triple reuptake inhibitor of dopamine, norepinephrine, and serotonin, was assessed in female Sprague-Dawley rats to determine whether it significantly reduces remifentanil self-administration with either acute or chronic treatment.Results
Acutely, amitifadine doses of 5, 10, and 20 mg/kg each significantly reduced remifentanil self-administration. In a chronic study, repeated treatment with 10 mg/kg of amitifadine continued to reduce remifentanil self-administration, even after the cessation of treatment. However, amitifadine was not found to attenuate the rise in remifentanil self-administration with continued access. This study and our earlier one showed that the 10 mg/kg amitifadine dose did not significantly affect food motivated responding. Amitifadine did not attenuate remifentanil-induced antinociception as measured on the hot plate test but extended and maintained antinociceptive effects.Conclusions
These studies show the promise of amitifadine as a treatment for countering opiate self-administration for adjunctive use with opioids for analgesia. Further studies are needed to determine the possible efficacy of amitifadine for combating opiate addiction or preventing it in humans during adjunctive use with opioids for chronic pain.Item Open Access Chronic infusions of mecamylamine into the medial habenula: Effects on nicotine self-administration in rats.(Behavioural brain research, 2022-01) Levin, Edward D; Wells, Corinne; Slade, Susan; Johnson, Joshua; Petro, Ann; Rezvani, Amir H; Rose, Jed EThe habenula is an epithalamic structure through which descending connections go from the telencephalon to the brainstem, putting it in a key location to provide feedback control over the ascending projections from the brainstem to the telencephalon. The medial habenula has a high concentration of nicotinic receptors. We assessed the role of medial habenular nicotinic receptors for nicotine self-administration (SA) in female young adult Sprague-Dawley rats. The rats had bilateral chronic infusion cannulae placed into the medial habenula nucleus. Each cannula was connected to a slow delivery osmotic minipump to chronically infuse mecamylamine (100 µg/side/day) or vehicle for four consecutive weeks. The rats were tested for nicotine SA for the first two weeks of mecamylamine infusion. Then, they had one week of enforced abstinence, during which they had no access to the nicotine SA. Finally, they had one week of resumed nicotine SA access. There was a significantly differential mecamylamine effects in animals with lower and higher pretreatment baseline nicotine SA. Rats with lower baseline nicotine SA levels showed a nearly significant mecamylamine-induced reduction in SA while those with higher baseline levels of SA showed a significant mecamylamine-induced increase in nicotine SA. This study determined that medial habenular nicotinic receptors are important for nicotine reinforcement. Baseline level of performance makes a crucial difference for the involvement of habenular mechanisms in nicotine reinforcement with nicotinic activation being important for maintaining nicotine self-administration for those with lower levels of baseline self-administration and the opposite effect with subjects with higher levels of baseline self-administration.Item Open Access Chronic memantine decreases nicotine self-administration in rats.(European journal of pharmacology, 2019-10) Levin, Edward D; Wells, Corinne; Yao, Leah; Guo, Wendi; Nangia, Anica; Howard, Sarah; Pippen, Erica; Hawkey, Andrew B; Rose, Jed E; Rezvani, Amir HNeurobehavioral bases of tobacco addiction and nicotine reinforcement are complex, involving more than only nicotinic cholinergic or dopaminergic systems. Memantine is an NMDA glutamate antagonist used to improve cognitive function in people with Alzheimer's disease. Glutamate may be an important component of the reinforcing effects of nicotine, so memantine was evaluated as a potential smoking cessation aid. Two studies were conducted with adult female rats, one testing acute effects of memantine over a range of doses for changing nicotine self-administration and the other testing the chronic effects of memantine to reduce nicotine self-administration. Acute memantine injections slightly, but significantly, increased nicotine self-administration in a dose-related manner. In contrast, chronic memantine treatment significantly reduced nicotine self-administration. During the first day of memantine administration in the chronic study, nicotine self-administration was significantly elevated replicating the acute study. Starting in the second week of treatment there was a significant reduction of nicotine self-administration relative to controls. This was seen because memantine treatment prevented the increase in nicotine self-administration shown by controls. There even continued to be a memantine-induced lowered nicotine self-administration during the week after the cessation of memantine treatment. Memantine or other drugs affecting NMDA glutamate receptors may be useful aids to smoking cessation. Full efficacy for reducing nicotine self-administration was seen as the NMDA drug treatment is given chronically. Importantly, the effect persisted even after treatment is ended, indicating the high potential for NMDA glutamate receptors to impact nicotine addiction.Item Open Access Cognitive and Behavioral Impairments Evoked by Low-Level Exposure to Tobacco Smoke Components: Comparison with Nicotine Alone.(Toxicological sciences : an official journal of the Society of Toxicology, 2016-06) Hall, Brandon J; Cauley, Marty; Burke, Dennis A; Kiany, Abtin; Slotkin, Theodore A; Levin, Edward DActive maternal smoking has adverse effects on neurobehavioral development of the offspring, with nicotine (Nic) providing much of the underlying causative mechanism. To determine whether the lower exposures caused by second-hand smoke are deleterious, we administered tobacco smoke extract (TSE) to pregnant rats starting preconception and continued through the second postnatal week, corresponding to all 3 trimesters of fetal brain development. Dosing was adjusted to produce maternal plasma Nic concentrations encountered with second-hand smoke, an order of magnitude below those seen in active smokers. We then compared TSE effects to those of an equivalent dose of Nic alone, and to a 10-fold higher Nic dose. Gestational exposure to TSE and Nic significantly disrupted cognitive and behavioral function in behavioral tests given during adolescence and adulthood (postnatal weeks 4-40), producing hyperactivity, working memory deficits, and impairments in emotional processing, even at the low exposure levels corresponding to second-hand smoke. Although TSE effects were highly correlated with those of Nic, the effects of TSE were much larger than could be attributed to just the Nic in the mixture. Indeed, TSE effects more closely resembled those of the 10-fold higher Nic levels, but still exceeded their magnitude. In combination with our earlier findings, this study thus completes the chain of causation to prove that second-hand smoke exposure causes neurodevelopmental deficits, originating in disruption of neurodifferentiation, leading to miswiring of neuronal circuits, and as shown here, culminating in behavioral dysfunction. As low level exposure to Nic alone produced neurobehavioral teratology, 'harm reduction' Nic products do not abolish the potential for neurodevelopmental damage.Item Open Access Developmental nicotine exposure and masculinization of the rat preoptic area.(Neurotoxicology, 2022-03) Joglekar, Rashmi; Cauley, Marty; Lipsich, Taylor; Corcoran, David L; Patisaul, Heather B; Levin, Edward D; Meyer, Joel N; McCarthy, Margaret M; Murphy, Susan KNicotine is a neuroteratogenic component of tobacco smoke, e-cigarettes, and other products and can exert sex-specific effects in the developing brain, likely mediated through sex hormones. Estradiol modulates expression of nicotinic acetylcholine receptors in rats, and plays critical roles in neurodevelopmental processes, including sexual differentiation of the brain. Here, we examined the effects of developmental nicotine exposure on the sexual differentiation of the preoptic area (POA), a brain region that normally displays robust structural sexual dimorphisms and controls adult mating behavior in rodents. Using a rat model of gestational exposure, developing pups were exposed to nicotine (2 mg/kg/day) via maternal osmotic minipump (subcutaneously, sc) throughout the critical window for brain sexual differentiation. At postnatal day (PND) 4, a subset of offspring was analyzed for epigenetic effects in the POA. At PND40, all offspring were gonadectomized, implanted with a testosterone-releasing capsule (sc), and assessed for male sexual behavior at PND60. Following sexual behavior assessment, the area of the sexually dimorphic nucleus of the POA (SDN-POA) was measured using immunofluorescent staining techniques. In adults, normal sex differences in male sexual behavior and in the SDN-POA area were eliminated in nicotine-treated animals. Using novel analytical approaches to evaluate overall masculinization of the adult POA, we identified significant masculinization of the nicotine-treated female POA. In neonates (PND4), nicotine exposure induced trending alterations in methylation-dependent masculinizing gene expression and DNA methylation levels at sexually-dimorphic differentially methylated regions, suggesting that developmental nicotine exposure is capable of triggering masculinization of the rat POA via epigenetic mechanisms.Item Open Access Evaluation of the association between maternal smoking, childhood obesity, and metabolic disorders: a national toxicology program workshop review.(Environmental health perspectives, 2013-02) Behl, Mamta; Rao, Deepa; Aagaard, Kjersti; Davidson, Terry L; Levin, Edward D; Slotkin, Theodore A; Srinivasan, Supriya; Wallinga, David; White, Morris F; Walker, Vickie R; Thayer, Kristina A; Holloway, Alison CBackground
An emerging literature suggests that environmental chemicals may play a role in the development of childhood obesity and metabolic disorders, especially when exposure occurs early in life.Objective
Here we assess the association between these health outcomes and exposure to maternal smoking during pregnancy as part of a broader effort to develop a research agenda to better understand the role of environmental chemicals as potential risk factors for obesity and metabolic disorders.Methods
PubMed was searched up to 8 March 2012 for epidemiological and experimental animal studies related to maternal smoking or nicotine exposure during pregnancy and childhood obesity or metabolic disorders at any age. A total of 101 studies-83 in humans and 18 in animals-were identified as the primary literature.Discussion
Current epidemiological data support a positive association between maternal smoking and increased risk of obesity or overweight in offspring. The data strongly suggest a causal relation, although the possibility that the association is attributable to unmeasured residual confounding cannot be completely ruled out. This conclusion is supported by findings from laboratory animals exposed to nicotine during development. The existing literature on human exposures does not support an association between maternal smoking during pregnancy and type 1 diabetes in offspring. Too few human studies have assessed outcomes related to type 2 diabetes or metabolic syndrome to reach conclusions based on patterns of findings. There may be a number of mechanistic pathways important for the development of aberrant metabolic outcomes following perinatal exposure to cigarette smoke, which remain largely unexplored.Conclusions
From a toxicological perspective, the linkages between maternal smoking during pregnancy and childhood overweight/obesity provide proof-of-concept of how early-life exposure to an environmental toxicant can be a risk factor for childhood obesity.Item Open Access Gestational exposure to nicotine and/or benzo[a]pyrene causes long-lasting neurobehavioral consequences.(Birth defects research, 2019-10) Hawkey, Andrew; Junaid, Shaqif; Yao, Leah; Spiera, Zachary; White, Hannah; Cauley, Marty; Levin, Edward DTobacco smoke is a complex mixture that includes thousands of compounds. Previously, we have found that gestational exposure to the complex mixture of tobacco smoke extract caused long-term neurobehavioral impairments. In this study, we examined the interaction of two of the most biologically active, nicotine and benzo[a]pyrene (BaP). Developmental effects were determined in Sprague-Dawley rats prenatally exposed to low doses of BaP and nicotine (0.03 mg/kg/day of BaP and 2 mg/kg/day of nicotine) via maternal osmotic minipumps throughout gestation. Behavioral function was assessed in the offspring via a battery of tests through adolescence into adulthood. There were sex-selective effects in four of the behavioral tests. In the elevated plus maze, there was a significant interaction of BaP and sex, where BaP-treated males showed a trend for increased activity. In the novelty suppressed feeding test, there were significant sex selective effects in males such that the normal sex difference in the behavior in this test was eliminated. Male offspring with prenatal exposure to either nicotine or BaP showed significant reductions in fear response. In the Figure-8 locomotor activity test, BAP-exposed male offspring were significantly hyperactive. This also eliminated the sex difference typically seen in this test. This effect persisted into adulthood. In the attention task, males exposed to nicotine during gestation showed a significant percent hit impairment. BaP reversed this effect. No significant effects were seen with percent correct rejection. These data show that both nicotine and BaP cause persisting sex-selective behavioral effects that persist into adulthood.Item Open Access Impact of acute nicotine exposure on monoaminergic systems in adolescent and adult male and female rats.(Neurotoxicology and teratology, 2022-09) Eddins, Donnie; Petro, Ann; Levin, Edward DAdolescence is a period of risk for beginning tobacco addiction. Differential neural response to nicotine in adolescents vs. adults may help explain the increased vulnerability to nicotine self-administration seen with adolescent onset. We indexed the effects of acute nicotine ditartrate (0.4 mg/kg, salt weight) administration on dopamine (DA) and serotonin (5HT) as well as the DA metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) in several brain regions (nucleus accumbens, striatum and frontal cortex) of 6-week old (adolescent) and 10-week old (young adult) Sprague-Dawley rats. When nicotine was administered DA concentrations in the accumbens were significantly higher in adults than in adolescents, whereas there was no age-related difference without nicotine. However neither age group showed a significant effect of nicotine vs. age-matched controls. DA turnover in the accumbens was significantly greater in adolescent females in response to nicotine, but adult females did not show this effect and neither did males of either age group. DA turnover in the striatum was significantly higher in adolescents than adults regardless of nicotine administration. In the frontal cortex, there was a more complex effect. Without nicotine, adult male rats had higher DA concentrations than adolescent males, whereas female rats did not differ from adolescent to adult ages. When given nicotine, the age effect was no longer seen in males. However, there was not a significant effect of nicotine vs. age-matched controls in either age group. No age or nicotine effects were seen in females. 5HT in the accumbens was significantly increased by nicotine administration in adults but not in adolescents. Altered neural responsivity of adolescents to nicotine-induced neural effects particularly in accumbens DA and 5HT may be related to the increased nicotine dose concentrations they self-administer.Item Open Access Oral sazetidine-A, a selective α4β2* nicotinic receptor desensitizing agent, reduces nicotine self-administration in rats.(Pharmacology, biochemistry, and behavior, 2019-04) Rezvani, Amir H; Wells, Corinne; Slade, Susan; Xiao, Yingxian; Kellar, Kenneth J; Levin, Edward DSazetidine-A selectively desensitizes α4β2 nicotinic receptors and also has partial agonist effects. We have shown that subcutaneous acute and repeated injections as well as chronic infusions of sazetidine-A significantly reduce intravenous (IV) nicotine self-administration in rats. To further investigate the promise of sazetidine-A as a smoking cessation aid, it is important to determine sazetidine-A effects with oral administration and the time-effect function for its action on nicotine self-administration. Young adult female Sprague-Dawley rats were trained to self-administer IV nicotine at the benchmark dose of 0.03 mg/kg/infusion dose in an operant FR1 schedule in 45-min sessions. After five sessions of training, they were tested for the effects of acute oral doses of sazetidine-A (0, 0.3, 1 and 3 mg/kg) given 30 min before testing. To determine the time-effect function, these rats were administered 0 or 3 mg/kg of sazetidine-A 1, 2, 4 or 23 h before the onset of testing. Our previous study showed that with subcutaneous injections, only 3 mg/kg of sazetidine-A significantly reduced nicotine self-administration, however, with oral administration of sazetidine-A lower dose of 1 mg/kg was also effective in reducing nicotine intake. A similar effect was seen in the time-effect study with 3 mg/kg of oral sazetidine-A causing a significant reduction in nicotine self-administration across all the time points of 1, 2, 4 or 23 h after oral administration. These results advance the development of sazetidine-A as a possible aid for smoking cessation by showing effectiveness with oral administration and persistence of the effect over the course of a day.Item Open Access Paternal nicotine exposure in rats produces long-lasting neurobehavioral effects in the offspring.(Neurotoxicology and teratology, 2019-05-16) Hawkey, Andrew B; White, Hannah; Pippen, Erica; Greengrove, Eva; Rezvani, Amir H; Murphy, Susan K; Levin, Edward DStudies of intergenerational effects of parental chemical exposure have principally focused on maternal exposure, particularly for studies of adverse neurobehavioral consequences on the offspring. Maternal nicotine exposure has long been known to cause adverse neurobehavioral effects on the offspring. However, paternal toxicant exposure has also been found to cause neurobehavioral toxicity in their offspring. Recent work suggests that paternal nicotine exposure can have epigenetic effects, although it remains unclear whether such changes lead to neurobehavioral effects. In the current study, we investigated the effects of paternal nicotine exposure on neurobehavioral development of their offspring. Male Sprague-Dawley rats were exposed to 0 or 2 mg/kg/day nicotine (sc) for 56 consecutive days with two consecutive 2ML4 osmotic minipumps. Following treatment, these males were mated with drug-naïve female rats. Offspring of both sexes were tested in a behavioral battery to assess locomotion, emotional function and cognition. Paternal nicotine exposure did not impact offspring viability, health or growth. However, behavioral function of the offspring was significantly altered by paternal nicotine exposure. Male offspring with paternal nicotine exposure exhibited locomotor hyperactivity in the Figure-8 apparatus when tested during adolescence. When retested in adulthood and regardless of sex, offspring of the nicotine exposed father showed significantly reduced habituation of locomotor activity over the course of the session. Compared to controls, female offspring of nicotine-exposed fathers showed significantly reduced response latency in the radial arm maze test. In addition to locomotor hyperactivity, the offspring of nicotine-exposed fathers also showed significantly diminished habituation in the novel object recognition test. These results indicate that chronic paternal nicotine exposure can impact the behavior of offspring, producing locomotor hyperactivity and impaired habituation.Item Open Access Prioritizing Common Terminology and Measures to Advance Research on Oral Nicotine Product Use.(Nicotine & tobacco research : official journal of the Society for Research on Nicotine and Tobacco, 2024-04) Hrywna, Mary; Ozga, Jenny E; Stanton, Cassandra A; Chaffee, Benjamin W; Delnevo, Cristine D; Fucito, Lisa M; Jabba, Sairam V; Morean, Meghan E; Tackett, Alayna PItem Open Access Randomized trial comparing mindfulness training for smokers to a matched control.(J Subst Abuse Treat, 2014-09) Davis, James M; Manley, Alison R; Goldberg, Simon B; Smith, Stevens S; Jorenby, Douglas ESmoking continues to take an enormous toll on society, and although most smokers would like to quit, most are unsuccessful using existing therapies. These findings call on researchers to develop and test therapies that provide higher rates of long-term smoking abstinence. We report results of a randomized controlled trial comparing a novel smoking cessation treatment using mindfulness training to a matched control based on the American Lung Association's Freedom From Smoking program. Data were collected on 175 low socioeconomic status smokers in 2011-2012 in a medium sized midwestern city. A significant difference was not found in the primary outcome; intent-to-treat biochemically confirmed 6-month smoking abstinence rates were mindfulness=25.0%, control=17.9% (p=0.35). Differences favoring the mindfulness condition were found on measures of urges and changes in mindfulness, perceived stress, and experiential avoidance. While no significant differences were found in quit rates, the mindfulness intervention resulted in positive outcomes.Item Open Access Role of nicotinic receptors in the lateral habenula in the attenuation of amphetamine-induced prepulse inhibition deficits of the acoustic startle response in rats.(Psychopharmacology, 2015-08) Larrauri, José A; Burke, Dennis A; Hall, Brandon J; Levin, Edward DRationale
Prepulse inhibition (PPI) refers to the reduction of the startle response magnitude when a startling stimulus is closely preceded by a weak stimulus. PPI is commonly used to measure sensorimotor gating. In rats, the PPI reduction induced by the dopamine agonist apomorphine can be reversed by systemic administration of nicotine. A high concentration of nicotinic receptors is found in the lateral habenula (LHb), an epithalamic structure with efferent projections to brain regions involved in the modulation of PPI, which has been shown to regulate the activity of midbrain dopamine neurons.Objectives
The prospective role of nicotinic receptors in the LHb in the regulation of PPI was assessed in this study, using different pharmacological models of sensorimotor gating deficits.Methods
Interactions between systemic amphetamine and haloperidol and intra-LHb infusions of mecamylamine (10 μg/side) or nicotine (30 μg/side) on PPI were analyzed in Experiments 1 and 2. Intra-LHb infusions of different nicotine doses (25, and 50 μg/side) and their interactions with systemic administration of amphetamine or dizocilpine on PPI were examined in Experiments 3 and 4.Results
Infusions of nicotine into the LHb dose-dependently attenuated amphetamine-induced PPI deficits but had no effect on PPI disruptions caused by dizocilpine. Intra-LHb mecamylamine infusions did not affect PPI nor interact with dopaminergic manipulations.Conclusions
These results are congruent with previous reports of systemic nicotine effects on PPI, suggesting a role of the LHb in the attenuation of sensorimotor gating deficits caused by the hyperactivity of dopamine systems.Item Open Access Self-administration by female rats of low doses of nicotine alone vs. nicotine in tobacco smoke extract.(Drug and alcohol dependence, 2021-11) Levin, Edward D; Wells, Corinne; Pace, Caroline; Abass, Grant; Hawkey, Andrew; Holloway, Zade; Rezvani, Amir H; Rose, Jed EBackground
Nicotine has reinforcing effects, but there are thousands of other compounds in tobacco, some of which might interact with nicotine reinforcement.Aims
This rat study was conducted to determine if nicotine self-administration is altered by co-administration of the complex mixture of compounds in tobacco smoke extract (TSE).Methods
Female Sprague-Dawley rats were tested for self-administration of low doses of nicotine (3 or 10 µg/kg/infusion) at three different rates of reinforcement (FR1, FR3 and FR5) over three weeks either alone or together with the complex mixture of tobacco smoke extract (TSE).Results
Rats self-administering 3 µg/kg/infusion of nicotine alone showed a rapid initiation on an FR1 schedule, but declined with FR5. Rats self-administering nicotine in TSE acquired self-administration more slowly, but increased responding over the course of the study. With 10 µg/kg/infusion rats self-administered significantly more nicotine alone than rats self-administering the same nicotine dose in TSE. Rats self-administering nicotine alone took significantly more infusions with the 10 than the 3 µg/kg/infusion dose, whereas rats self-administering nicotine in TSE did not. Nicotine in TSE led to a significantly greater locomotor hyperactivity at a dose of 0.1 mg/kg compared to rats that received nicotine alone. Rats self-administering nicotine alone had significantly more responding on the active vs. inactive lever, but rats self-administering the same nicotine doses in TSE did not.Conclusions
Self-administration of nicotine in a purer form appears to be more clearly discriminated and dose-related than nicotine self-administered in the complex mixture of TSE.Item Open Access Sperm DNA methylation altered by THC and nicotine: Vulnerability of neurodevelopmental genes with bivalent chromatin.(Scientific reports, 2020-09) Schrott, Rose; Rajavel, Maya; Acharya, Kelly; Huang, Zhiqing; Acharya, Chaitanya; Hawkey, Andrew; Pippen, Erica; Lyerly, H Kim; Levin, Edward D; Murphy, Susan KMen consume the most nicotine and cannabis products but impacts on sperm epigenetics are poorly characterized. Evidence suggests that preconception exposure to these drugs alters offspring neurodevelopment. Epigenetics may in part facilitate heritability. We therefore compared effects of exposure to tetrahydrocannabinol (THC) and nicotine on DNA methylation in rat sperm at genes involved in neurodevelopment. Reduced representation bisulfite sequencing data from sperm of rats exposed to THC via oral gavage showed that seven neurodevelopmentally active genes were significantly differentially methylated versus controls. Pyrosequencing data revealed majority overlap in differential methylation in sperm from rats exposed to THC via injection as well as those exposed to nicotine. Neurodevelopmental genes including autism candidates are vulnerable to environmental exposures and common features may mediate this vulnerability. We discovered that autism candidate genes are significantly enriched for bivalent chromatin structure, suggesting this configuration may increase vulnerability of genes in sperm to disrupted methylation.Item Open Access Subchronic effects of plant alkaloids on anxiety-like behavior in zebrafish.(Pharmacology, biochemistry, and behavior, 2021-08) Hawkey, Andrew B; Hoeng, Julia; Peitsch, Manuel C; Levin, Edward D; Koshibu, KyokoZebrafish provide a valuable emerging complementary model for neurobehavioral research. They offer a powerful way to screen for the potential therapeutic effects of neuroactive drugs. A variety of behavioral tests for zebrafish have been developed and validated for assessing neurobehavioral function. The novel tank diving test is a straightforward, reproducible way of measuring anxiety-like behavior in zebrafish. When introduced into a novel tank, zebrafish normally dive to the bottom of the tank and then gradually explore the higher levels of the water column as time progresses. Buspirone is an effective anxiolytic drug in humans, which has been found, with acute administration, to reduce this anxiety-like response in zebrafish. The current study used the zebrafish model to evaluate the potential anxiolytic effects of alkaloids, commonly found in Solanaceae plants, with known neuropharmacology relevant to mood regulation. In line with previous findings, acute treatment with anxiolytic positive controls buspirone and the plant alkaloid nicotine reduced the anxiety-like diving response in the zebrafish novel tank diving test. Further, both buspirone and nicotine continued to produce anxiolytic-like effects in zebrafish after 5 days of exposure. In the same treatment paradigm, the effects of five other alkaloids-cotinine, anatabine, anabasine, harmane, and norharmane-were investigated. Cotinine, the major metabolite of nicotine, also caused anxiolytic-like effects, albeit at a dose higher than the effective dose of nicotine. Nicotine's anxiolytic-like effect was not shared by the other nicotinic alkaloids, anabasine and anatabine, or by the naturally present monoamine oxidase inhibitors harmane and norharmane. We conclude that nicotine uniquely induces anxiolytic-like effects after acute and subchronic treatment in zebrafish. The zebrafish model with the novel tank diving test could be a useful complement to rodent models for screening candidate compounds for anxiolytic effects in nonclinical studies.Item Open Access The Developmental Neurotoxicity of Tobacco Smoke Can Be Mimicked by a Combination of Nicotine and Benzo[a]Pyrene: Effects on Cholinergic and Serotonergic Systems.(Toxicological sciences : an official journal of the Society of Toxicology, 2019-01) Slotkin, Theodore A; Skavicus, Samantha; Ko, Ashley; Levin, Edward D; Seidler, Frederic JTobacco smoke contains polycyclic aromatic hydrocarbons (PAHs) in addition to nicotine. We compared the developmental neurotoxicity of nicotine to that of the PAH archetype, benzo[a]pyrene (BaP), and also evaluated the effects of combined exposure to assess whether PAHs might exacerbate the adverse effects of nicotine. Pregnant rats were treated preconception through the first postnatal week, modeling nicotine concentrations in smokers and a low BaP dose devoid of systemic effects. We conducted evaluations of acetylcholine (ACh) and serotonin (5-hydroxytryptamine, 5HT) systems in brain regions from adolescence through full adulthood. Nicotine or BaP alone impaired indices of ACh presynaptic activity, accompanied by upregulation of nicotinic ACh receptors and 5HT receptors. Combined treatment elicited a greater deficit in ACh presynaptic activity than that seen with either agent alone, and upregulation of nAChRs and 5HT receptors was impaired or absent. The individual effects of nicotine and BaP accounted for only 60% of the combination effects, which thus displayed unique properties. Importantly, the combined nicotine + BaP exposure recapitulated the effects of tobacco smoke, distinct from nicotine. Our results show that the effects of nicotine on development of ACh and 5HT systems are worsened by BaP coexposure, and that combination of the two agents contributes to the greater impact of tobacco smoke on the developing brain. These results have important implications for the relative safety in pregnancy of nicotine-containing products compared with combusted tobacco, both for active maternal smoking and secondhand exposure, and for the effects of such agents in "dirty" environments with high PAH coexposure.Item Open Access This is your teen brain on drugs: In search of biological factors unique to dependence toxicity in adolescence.(Neurotoxicology and teratology, 2020-09) Kwan, Leslie Y; Eaton, David L; Andersen, Susan L; Dow-Edwards, Diana; Levin, Edward D; Talpos, John; Vorhees, Charles V; Li, Abby AResponse variability across the lifespan is an important consideration in toxicology and risk assessment, and the toxic effects of drugs and chemicals during adolescence need more research. This paper summarizes a workshop presented in March 2019, at the Society of Toxicology Annual Meeting in Baltimore, Maryland, that brought together experts in research on drug dependence and toxicity related to nicotine, cannabis, cocaine, and other illicit drugs during adolescence. The goal of the workshop was to address the following issues: (1) Do the effects of adolescent exposure differ from the same exposure in adults? (2) Are there unique biological markers of adolescent brain development? If so, what are they and how reliable are they? (3) Since multiple factors influence substance use disorder, can we disentangle risk factors for abuse and/or toxicity? What are the underlying biological susceptibilities that lead to dependence and neurotoxicity? What are the social, psychosocial and environmental factors that contribute to abuse susceptibilities? This paper reviews drug policy and national trends in adolescent substance use; the public health consequences of e-cigarettes; rat models of adolescent-onset nicotine self-administration and persisting effects of gestational nicotine; sex-dependent effects of delta-9-tetrahydrocannabinol on adolescent brain-behavior relationships; and translational approaches for identifying adolescent risk factors for transition to drug dependence. There is strong evidence that drug exposure prior to adulthood has longer lasting effects on behavior and the underlying neural circuitry. These effects, which are sex-dependent and influenced by stress, may be candidates as predictors of adolescent vulnerability. A major challenge to determining if adolescents have a unique susceptibility to dependence is whether and to what extent the human data allow distinction between the increased risk due to biological immaturity, an underlying biological susceptibility to dependence, or psychosocial and environmental factors for substance dependence. Factors important to consider for development of animal models include the timing and pattern of exposure as it relates to adolescence; age of assessment, and direct comparison with similar effects following exposures to adults to demonstrate that these effects are unique to adolescence. Here we provide a roadmap for further research into what makes adolescent brain development unique.