Browsing by Subject "Nitrophenols"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Item Open Access In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl)acetyl. I. The architecture and dynamics of responding cell populations.(J Exp Med, 1991-05-01) Jacob, J; Kassir, R; Kelsoe, GAfter primary immunization with an immunogenic conjugate of (4-hydroxy-3-nitrophenyl)acetyl, two anatomically and phenotypically distinct populations of antibody-forming cells arise in the spleen. As early as 2 d after immunization, foci of antigen-binding B cells are observed along the periphery of the periarteriolar lymphoid sheaths. These foci expand, occupying as much as 1% of the splenic volume by day 8 of the response. Later, foci grow smaller and are virtually absent from the spleen by day 14. A second responding population, germinal center B cells, appear on day 8-10 and persist at least until day 16 post-immunization. Individual foci and germinal centers represent discrete pauciclonal populations that apparently undergo somatic evolution in the course of the primary response. We suggest that foci may represent regions of predominantly interclonal competition for antigen among unmutated B cells, while germinal centers are sites of intraclonal clonal competition between mutated sister lymphocytes.Item Open Access In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl)acetyl. II. A common clonal origin for periarteriolar lymphoid sheath-associated foci and germinal centers.(J Exp Med, 1992-09-01) Jacob, J; Kelsoe, GIn the genetically restricted response that follows immunization with (4-hydroxy-3-nitrophenyl)acetyl coupled to protein carriers, two distinct populations of B cells are observed in the spleens of C57BL/6 mice. By 48 h postimmunization, foci of antigen-binding B cells appear along the periphery of the periarteriolar lymphoid sheaths. These foci expand to contain large numbers of antibody-forming cells that neither bind the lectin, peanut agglutinin, nor mutate the rearranged immunoglobulin variable region loci. Germinal centers containing peanut agglutinin-positive B cells can be observed by 96-120 h after immunization. Although specific for the immunizing hapten, these B cells do not produce substantial amounts of antibody, but are the population that undergoes somatic hypermutation and affinity-driven selection. Both focus and germinal center populations are pauciclonal, founded, on average, by three or fewer B lymphocytes. Despite the highly specialized roles of the focus (early antibody production) and germinal center (higher affinity memory cells) B cell populations, analysis of VH to D to JH joins in neighboring foci and germinal centers demonstrate that these B cell populations have a common clonal origin.Item Open Access In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl)acetyl. III. The kinetics of V region mutation and selection in germinal center B cells.(J Exp Med, 1993-10-01) Jacob, J; Przylepa, J; Miller, C; Kelsoe, GIn the murine spleen, germinal centers are the anatomic sites for antigen-driven hypermutation and selection of immunoglobulin (Ig) genes. To detail the kinetics of Ig mutation and selection, 178 VDJ sequences from 16 antigen-induced germinal centers were analyzed. Although germinal centers appeared by day 4, mutation was not observed in germinal center B cells until day 8 postimmunization; thereafter, point mutations favoring asymmetrical transversions accumulated until day 14. During this period, strong phenotypic selection on the mutant B lymphocytes was inferred from progressively biased distributions of mutations within the Ig variable region, the loss of crippling mutations, decreased relative clonal diversity, and increasingly restricted use of canonical gene segments. The period of most intense selection on germinal center B cell populations preceded significant levels of mutation and may represent a physiologically determined restriction on B cells permitted to enter the memory pathway. Noncanonical Ig genes recovered from germinal centers were mostly unmutated although they probably came from antigen-reactive cells. Together, these observations demonstrate that the germinal center microenvironment is rich and temporally complex but may not be constitutive for somatic hypermutation.Item Open Access In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl)acetyl. IV. Affinity-dependent, antigen-driven B cell apoptosis in germinal centers as a mechanism for maintaining self-tolerance.(J Exp Med, 1995-12-01) Han, S; Zheng, B; Dal Porto, J; Kelsoe, GGerminal centers (GCs) are the sites of antigen-driven V(D)J gene hypermutation and selection necessary for the generation of high affinity memory B lymphocytes. Despite the antigen dependence of this reaction, injection of soluble antigen during an established primary immune response induces massive apoptotic death in GC B cells, but not in clonally related populations of nonfollicular B lymphoblasts and plasmacytes. Cell death in GCs occurs predominantly among light zone centrocytes, is antigen specific, and peaks within 4-8 h after injection. Antigen-induced programmed death does not involve cellular interactions mediated by CD40 ligand (CD40L) or Fas; disruption of GCs by antibody specific for CD40L was not driven by apoptosis and C57BL/6.lpr mice, though unable to express the Fas death trigger, remained fully susceptible to soluble antigen. Single injections of antigen did not significantly decrease GC numbers or average size, but repeated injections during an 18-h period resulted in fewer and substantially smaller GCs. As cell loss appeared most extensive in the light zone, decreased GC cellularity after prolonged exposure to soluble antigen implies that the Ig- centroblasts of the dark zone may require replenishment from light zone cells that have survived antigenic selection. GC cell death is avidity-dependent; oligovalent antigen induced relatively little apoptosis and GC B cells that survived long exposures to multivalent antigen expressed atypical VDJ rearrangements unlikely to encode high affinity antibody. Antigen-induced apoptotic death in GCs may represent a mechanism for the peripheral deletion of autoreactive B cell mutants much as the combinatorial repertoire of immature B lymphocytes is censored in the bone marrow.Item Open Access In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl)acetyl. V. Affinity maturation develops in two stages of clonal selection.(J Exp Med, 1998-03-16) Takahashi, Y; Dutta, PR; Cerasoli, DM; Kelsoe, GTo examine the role of germinal centers (GCs) in the generation and selection of high affinity antibody-forming cells (AFCs), we have analyzed the average affinity of (4-hydroxy-3-nitrophenyl)acetyl (NP)-specific AFCs and serum antibodies both during and after the GC phase of the immune response. In addition, the genetics of NP-binding AFCs were followed to monitor the generation and selection of high affinity AFCs at the clonal level. NP-binding AFCs gradually accumulate in bone marrow (BM) after immunization and BM becomes the predominant locale of specific AFCs in the late primary response. Although the average affinity of NP-specific BM AFCs rapidly increased while GCs were present (GC phase), the affinity of both BM AFCs and serum antibodies continued to increase even after GCs waned (post-GC phase). Affinity maturation in the post-GC phase was also reflected in a shift in the distribution of somatic mutations as well as in the CDR3 sequences of BM AFC antibody heavy chain genes. Disruption of GCs by injection of antibody specific for CD154 (CD40 ligand) decreased the average affinity of subsequent BM AFCs, suggesting that GCs generate the precursors of high affinity BM AFCs; inhibition of CD154-dependent cellular interactions after the GC reaction was complete had no effect on high affinity BM AFCs. Interestingly, limited affinity maturation in the BM AFC compartment still occurs during the late primary response even after treatment with anti-CD154 antibody. Thus, GCs are necessary for the generation of high affinity AFC precursors but are not the only sites for the affinity-driven clonal selection responsible for the maturation of humoral immune responses.Item Open Access Synergistic antitumor effects of 9.2.27-PE38KDEL and ABT-737 in primary and metastatic brain tumors.(PloS one, 2019-01-09) Yu, Xin; Dobrikov, Mikhail; Keir, Stephen T; Gromeier, Matthias; Pastan, Ira H; Reisfeld, Ralph; Bigner, Darell D; Chandramohan, VidyalakshmiStandard treatment, unfortunately, yields a poor prognosis for patients with primary or metastatic cancers in the central nervous system, indicating a necessity for novel therapeutic agents. Immunotoxins (ITs) are a class of promising therapeutic candidates produced by fusing antibody fragments with toxin moieties. In this study, we investigated if inherent resistance to IT cytotoxicity can be overcome by rational combination with pro-apoptotic enhancers. Therefore, we combined ITs (9.2.27-PE38KDEL or Mel-14-PE38KDEL) targeting chondroitin sulfate proteoglycan 4 (CSPG4) with a panel of Bcl-2 family inhibitors (ABT-737, ABT-263, ABT-199 [Venetoclax], A-1155463, and S63845) against patient-derived glioblastoma, melanoma, and breast cancer cells/cell lines. In vitro cytotoxicity assays demonstrated that the addition of the ABT compounds, specifically ABT-737, sensitized the different tumors to IT treatment, and improved the IC50 values of 9.2.27-PE38KDEL up to >1,000-fold. Mechanistic studies using 9.2.27-PE38KDEL and ABT-737 revealed that increased levels of intracellular IT, processed (active) exotoxin, and PARP cleavage correlated with the enhanced sensitivity to the combination treatment. Furthermore, we confirmed the synergistic effect of 9.2.27-PE38KDEL and ABT-737 combination therapy in orthotopic GBM xenograft and cerebral melanoma metastasis models in nude mice. Our study defines strategies for overcoming IT resistance and enhancing specific antitumor cytotoxicity in primary and metastatic brain tumors.