Browsing by Subject "Nucleosomes"
- Results Per Page
- Sort Options
Item Open Access A genetic memory initiates the epigenetic loop necessary to preserve centromere position.(The EMBO journal, 2020-10) Hoffmann, Sebastian; Izquierdo, Helena M; Gamba, Riccardo; Chardon, Florian; Dumont, Marie; Keizer, Veer; Hervé, Solène; McNulty, Shannon M; Sullivan, Beth A; Manel, Nicolas; Fachinetti, DanieleCentromeres are built on repetitive DNA sequences (CenDNA) and a specific chromatin enriched with the histone H3 variant CENP-A, the epigenetic mark that identifies centromere position. Here, we interrogate the importance of CenDNA in centromere specification by developing a system to rapidly remove and reactivate CENP-A (CENP-AOFF/ON ). Using this system, we define the temporal cascade of events necessary to maintain centromere position. We unveil that CENP-B bound to CenDNA provides memory for maintenance on human centromeres by promoting de novo CENP-A deposition. Indeed, lack of CENP-B favors neocentromere formation under selective pressure. Occasionally, CENP-B triggers centromere re-activation initiated by CENP-C, but not CENP-A, recruitment at both ectopic and native centromeres. This is then sufficient to initiate the CENP-A-based epigenetic loop. Finally, we identify a population of CENP-A-negative, CENP-B/C-positive resting CD4+ T cells capable to re-express and reassembles CENP-A upon cell cycle entry, demonstrating the physiological importance of the genetic memory.Item Open Access A nucleosome-guided map of transcription factor binding sites in yeast.(PLoS Comput Biol, 2007-11) Narlikar, Leelavati; Gordân, Raluca; Hartemink, Alexander JFinding functional DNA binding sites of transcription factors (TFs) throughout the genome is a crucial step in understanding transcriptional regulation. Unfortunately, these binding sites are typically short and degenerate, posing a significant statistical challenge: many more matches to known TF motifs occur in the genome than are actually functional. However, information about chromatin structure may help to identify the functional sites. In particular, it has been shown that active regulatory regions are usually depleted of nucleosomes, thereby enabling TFs to bind DNA in those regions. Here, we describe a novel motif discovery algorithm that employs an informative prior over DNA sequence positions based on a discriminative view of nucleosome occupancy. When a Gibbs sampling algorithm is applied to yeast sequence-sets identified by ChIP-chip, the correct motif is found in 52% more cases with our informative prior than with the commonly used uniform prior. This is the first demonstration that nucleosome occupancy information can be used to improve motif discovery. The improvement is dramatic, even though we are using only a statistical model to predict nucleosome occupancy; we expect our results to improve further as high-resolution genome-wide experimental nucleosome occupancy data becomes increasingly available.Item Open Access Chromatin: bind at your own RSC.(Curr Biol, 2011-03-22) Buchler, Nicolas E; Bai, LuRecent work has identified a novel RSC-nucleosome complex that both strongly phases flanking nucleosomes and presents regulatory sites for ready access. These results challenge several widely held views.Item Open Access Epigenetic basis of oncogenic-Kras-mediated epithelial-cellular proliferation and plasticity.(Developmental cell, 2022-02) Kadur Lakshminarasimha Murthy, Preetish; Xi, Rui; Arguijo, Diana; Everitt, Jeffrey I; Kocak, Dewran D; Kobayashi, Yoshihiko; Bozec, Aline; Vicent, Silvestre; Ding, Shengli; Crawford, Gregory E; Hsu, David; Tata, Purushothama Rao; Reddy, Timothy; Shen, XilingOncogenic Kras induces a hyper-proliferative state that permits cells to progress to neoplasms in diverse epithelial tissues. Depending on the cell of origin, this also involves lineage transformation. Although a multitude of downstream factors have been implicated in these processes, the precise chronology of molecular events controlling them remains elusive. Using mouse models, primary human tissues, and cell lines, we show that, in Kras-mutant alveolar type II cells (AEC2), FOSL1-based AP-1 factor guides the mSWI/SNF complex to increase chromatin accessibility at genomic loci controlling the expression of genes necessary for neoplastic transformation. We identified two orthogonal processes in Kras-mutant distal airway club cells. The first promoted their transdifferentiation into an AEC2-like state through NKX2.1, and the second controlled oncogenic transformation through the AP-1 complex. Our results suggest that neoplasms retain an epigenetic memory of their cell of origin through cell-type-specific transcription factors. Our analysis showed that a cross-tissue-conserved AP-1-dependent chromatin remodeling program regulates carcinogenesis.Item Open Access Evaluating the discriminating capacity of cell death (apoptotic) biomarkers in sepsis.(Journal of intensive care, 2018-01) Duplessis, Christopher; Gregory, Michael; Frey, Kenneth; Bell, Matthew; Truong, Luu; Schully, Kevin; Lawler, James; Langley, Raymond J; Kingsmore, Stephen F; Woods, Christopher W; Rivers, Emanuel P; Jaehne, Anja K; Quackenbush, Eugenia B; Fowler, Vance G; Tsalik, Ephraim L; Clark, DanielleBackground
Sepsis biomarker panels that provide diagnostic and prognostic discrimination in sepsis patients would be transformative to patient care. We assessed the mortality prediction and diagnostic discriminatory accuracy of two biomarkers reflective of cell death (apoptosis), circulating cell-free DNA (cfDNA), and nucleosomes.Methods
The cfDNA and nucleosome levels were assayed in plasma samples acquired in patients admitted from four emergency departments with suspected sepsis. Subjects with non-infectious systemic inflammatory response syndrome (SIRS) served as controls. Samples were acquired at enrollment (T0) and 24 h later (T24). We assessed diagnostic (differentiating SIRS from sepsis) and prognostic (28-day mortality) predictive power. Models incorporating procalcitonin (diagnostic prediction) and APACHE II scores (mortality prediction) were generated.Results
Two hundred three subjects were included (107 provided procalcitonin measurements). Four subjects exhibited uncomplicated sepsis, 127 severe sepsis, 35 septic shock, and 24 had non-infectious SIRS. There were 190-survivors and 13 non-survivors. Mortality prediction models using cfDNA, nucleosomes, or APACHEII yielded AUC values of 0.61, 0.75, and 0.81, respectively. A model combining nucleosomes with the APACHE II score improved the AUC to 0.84. Diagnostic models distinguishing sepsis from SIRS using procalcitonin, cfDNA(T0), or nucleosomes(T0) yielded AUC values of 0.64, 0.65, and 0.63, respectively. The three parameter model yielded an AUC of 0.74.Conclusions
To our knowledge, this is the first head-to-head comparison of cfDNA and nucleosomes in diagnosing sepsis and predicting sepsis-related mortality. Both cfDNA and nucleosome concentrations demonstrated a modest ability to distinguish sepsis survivors and non-survivors and provided additive diagnostic predictive accuracy in differentiating sepsis from non-infectious SIRS when integrated into a diagnostic prediction model including PCT and APACHE II. A sepsis biomarker strategy incorporating measures of the apoptotic pathway may serve as an important component of a sepsis diagnostic and mortality prediction tool.Item Open Access Interactions of chromatin context, binding site sequence content, and sequence evolution in stress-induced p53 occupancy and transactivation.(PLoS Genet, 2015-01) Su, Dan; Wang, Xuting; Campbell, Michelle R; Song, Lingyun; Safi, Alexias; Crawford, Gregory E; Bell, Douglas ACellular stresses activate the tumor suppressor p53 protein leading to selective binding to DNA response elements (REs) and gene transactivation from a large pool of potential p53 REs (p53REs). To elucidate how p53RE sequences and local chromatin context interact to affect p53 binding and gene transactivation, we mapped genome-wide binding localizations of p53 and H3K4me3 in untreated and doxorubicin (DXR)-treated human lymphoblastoid cells. We examined the relationships among p53 occupancy, gene expression, H3K4me3, chromatin accessibility (DNase 1 hypersensitivity, DHS), ENCODE chromatin states, p53RE sequence, and evolutionary conservation. We observed that the inducible expression of p53-regulated genes was associated with the steady-state chromatin status of the cell. Most highly inducible p53-regulated genes were suppressed at baseline and marked by repressive histone modifications or displayed CTCF binding. Comparison of p53RE sequences residing in different chromatin contexts demonstrated that weaker p53REs resided in open promoters, while stronger p53REs were located within enhancers and repressed chromatin. p53 occupancy was strongly correlated with similarity of the target DNA sequences to the p53RE consensus, but surprisingly, inversely correlated with pre-existing nucleosome accessibility (DHS) and evolutionary conservation at the p53RE. Occupancy by p53 of REs that overlapped transposable element (TE) repeats was significantly higher (p<10-7) and correlated with stronger p53RE sequences (p<10-110) relative to nonTE-associated p53REs, particularly for MLT1H, LTR10B, and Mer61 TEs. However, binding at these elements was generally not associated with transactivation of adjacent genes. Occupied p53REs located in L2-like TEs were unique in displaying highly negative PhyloP scores (predicted fast-evolving) and being associated with altered H3K4me3 and DHS levels. These results underscore the systematic interaction between chromatin status and p53RE context in the induced transactivation response. This p53 regulated response appears to have been tuned via evolutionary processes that may have led to repression and/or utilization of p53REs originating from primate-specific transposon elements.Item Open Access Stochastic and Agent-based Modeling of Gene Expression and Cell Fate Decisions(2021) Mines, Robert CarlAs new experimental techniques expand our capacity to understand the internal states of single cells and to track the behavior of individual enzymes, classical modeling techniques for deterministic chemical kinetics break down. Thus, more flexible stochastic and agent-based modeling techniques need to be employed. Two paradigmatic are considered. First, a stochastic agent-based model of transcription with nucleosome-induced pausing that maps onto the ddTASEP was constructed to demonstrate a potential mechanism of transcriptional bursting. In lieu of using a mean-field approach, Markov chain techniques were used to calculate the moments of the first passage time from the nucleosome dynamic rate constants. A mean first passage rate was calculated and utilized to construct a new axis to the TASEP phase diagram that contained a jamming transition between initiation- and dynamic defect-limited regions. Second, an integrated Notch/Delta and Wnt/β-catenin gene circuit with crosstalk through the expression of Hes1 was constructed on a lattice model of the intestinal crypt. The distributed control of Hes1 expression, the mechanisms of Wnt secretion, and the redundant role of Paneth cells as a Wnt source were investigated. Tunable mosaic pattern formation at the crypt base was observed, and the addition of the secondary Wnt feedback loop offered a slight increase in model robustness to parameter changes and intrinsic stochasticity.
Item Open Access Torsional behavior of chromatin is modulated by rotational phasing of nucleosomes.(Nucleic Acids Res, 2014-09) Nam, Gi-Moon; Arya, GauravTorsionally stressed DNA plays a critical role in genome organization and regulation. While the effects of torsional stresses on naked DNA have been well studied, little is known about how these stresses propagate within chromatin and affect its organization. Here we investigate the torsional behavior of nucleosome arrays by means of Brownian dynamics simulations of a coarse-grained model of chromatin. Our simulations reveal a strong dependence of the torsional response on the rotational phase angle Ψ0 between adjacent nucleosomes. Extreme values of Ψ0 lead to asymmetric, bell-shaped extension-rotation profiles with sharp maxima shifted toward positive or negative rotations, depending on the sign of Ψ0, and to fast, irregular propagation of DNA twist. In contrast, moderate Ψ0 yield more symmetric profiles with broad maxima and slow, uniform propagation of twist. The observed behavior is shown to arise from an interplay between nucleosomal transitions into states with crossed and open linker DNAs and global supercoiling of arrays into left- and right-handed coils, where Ψ0 serves to modulate the energy landscape of nucleosomal states. Our results also explain the torsional resilience of chromatin, reconcile differences between experimentally measured extension-rotation profiles, and suggest a role of torsional stresses in regulating chromatin assembly and organization.