Browsing by Subject "Nucleus Accumbens"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Cannabis use is associated with potentially heritable widespread changes in autism candidate gene DLGAP2 DNA methylation in sperm.(Epigenetics, 2020-01) Schrott, Rose; Acharya, Kelly; Itchon-Ramos, Nilda; Hawkey, Andrew B; Pippen, Erica; Mitchell, John T; Kollins, Scott H; Levin, Edward D; Murphy, Susan KParental cannabis use has been associated with adverse neurodevelopmental outcomes in offspring, but how such phenotypes are transmitted is largely unknown. Using reduced representation bisulphite sequencing (RRBS), we recently demonstrated that cannabis use is associated with widespread DNA methylation changes in human and rat sperm. Discs-Large Associated Protein 2 (DLGAP2), involved in synapse organization, neuronal signaling, and strongly implicated in autism, exhibited significant hypomethylation (p < 0.05) at 17 CpG sites in human sperm. We successfully validated the differential methylation present in DLGAP2 for nine CpG sites located in intron seven (p < 0.05) using quantitative bisulphite pyrosequencing. Intron 7 DNA methylation and DLGAP2 expression in human conceptal brain tissue were inversely correlated (p < 0.01). Adult male rats exposed to delta-9-tetrahydrocannabinol (THC) showed differential DNA methylation at Dlgap2 in sperm (p < 0.03), as did the nucleus accumbens of rats whose fathers were exposed to THC prior to conception (p < 0.05). Altogether, these results warrant further investigation into the effects of preconception cannabis use in males and the potential effects on subsequent generations.Item Open Access Impact of acute nicotine exposure on monoaminergic systems in adolescent and adult male and female rats.(Neurotoxicology and teratology, 2022-09) Eddins, Donnie; Petro, Ann; Levin, Edward DAdolescence is a period of risk for beginning tobacco addiction. Differential neural response to nicotine in adolescents vs. adults may help explain the increased vulnerability to nicotine self-administration seen with adolescent onset. We indexed the effects of acute nicotine ditartrate (0.4 mg/kg, salt weight) administration on dopamine (DA) and serotonin (5HT) as well as the DA metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) in several brain regions (nucleus accumbens, striatum and frontal cortex) of 6-week old (adolescent) and 10-week old (young adult) Sprague-Dawley rats. When nicotine was administered DA concentrations in the accumbens were significantly higher in adults than in adolescents, whereas there was no age-related difference without nicotine. However neither age group showed a significant effect of nicotine vs. age-matched controls. DA turnover in the accumbens was significantly greater in adolescent females in response to nicotine, but adult females did not show this effect and neither did males of either age group. DA turnover in the striatum was significantly higher in adolescents than adults regardless of nicotine administration. In the frontal cortex, there was a more complex effect. Without nicotine, adult male rats had higher DA concentrations than adolescent males, whereas female rats did not differ from adolescent to adult ages. When given nicotine, the age effect was no longer seen in males. However, there was not a significant effect of nicotine vs. age-matched controls in either age group. No age or nicotine effects were seen in females. 5HT in the accumbens was significantly increased by nicotine administration in adults but not in adolescents. Altered neural responsivity of adolescents to nicotine-induced neural effects particularly in accumbens DA and 5HT may be related to the increased nicotine dose concentrations they self-administer.Item Open Access Opioid Self-Administration is Attenuated by Early-Life Experience and Gene Therapy for Anti-Inflammatory IL-10 in the Nucleus Accumbens of Male Rats.(Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology, 2017-10) Lacagnina, Michael J; Kopec, Ashley M; Cox, Stewart S; Hanamsagar, Richa; Wells, Corinne; Slade, Susan; Grace, Peter M; Watkins, Linda R; Levin, Edward D; Bilbo, Staci DEarly-life conditions can contribute to the propensity for developing neuropsychiatric disease, including substance abuse disorders. However, the long-lasting mechanisms that shape risk or resilience for drug addiction remain unclear. Previous work has shown that a neonatal handling procedure in rats (which promotes enriched maternal care) attenuates morphine conditioning, reduces morphine-induced glial activation, and increases microglial expression of the anti-inflammatory cytokine interleukin-10 (IL-10). We thus hypothesized that anti-inflammatory signaling may underlie the effects of early-life experience on later-life opioid drug-taking. Here we demonstrate that neonatal handling attenuates intravenous self-administration of the opioid remifentanil in a drug-concentration-dependent manner. Transcriptional profiling of the nucleus accumbens (NAc) from handled rats following repeated exposure to remifentanil reveals a suppression of pro-inflammatory cytokine and chemokine gene expression, consistent with an anti-inflammatory phenotype. To determine if anti-inflammatory signaling alters drug-taking behavior, we administered intracranial injections of plasmid DNA encoding IL-10 (pDNA-IL-10) into the NAc of non-handled rats. We discovered that pDNA-IL-10 treatment reduces remifentanil self-administration in a drug-concentration-dependent manner, similar to the effect of handling. In contrast, neither handling nor pDNA-IL-10 treatment alters self-administration of food or sucrose rewards. These collective observations suggest that neuroimmune signaling mechanisms in the NAc are shaped by early-life experience and may modify motivated behaviors for opioid drugs. Moreover, manipulation of the IL-10 signaling pathway represents a novel approach for influencing opioid reinforcement.