Browsing by Subject "Olfactory bulb"
Results Per Page
Sort Options
Item Open Access Concentration-dependent recruitment of mammalian odorant receptors(2019) Hu, Xiaoyang SereneDeciphering natural odor plumes with dynamic changes in odor concentrations presents a common challenge to all animals. A fundamental challenge in studying the organization principles of the olfactory system to encode odor concentration information is the lack of comprehensively identified sets of activated odorant receptors (ORs) across an odorant concentration range inside freely behaving animals. In mammals, this has recently become feasible with high-throughput sequencing-based methods that identify populations of odorant activated ORs in vivo. In this study, we characterized the mouse OR repertoires activated by two odorants, acetophenone (ACT) and 2,5-dihydro-2,4,5-trimethylthiazoline (TMT), from 0.01% to 100% (v/v) concentrations. We also investigated the OR repertoires for structural derivatives of TMT (component of fox odor) such as 2methyl-2-thiazoline (2MT) and 2,4,5-Trimethylthiazole (nTMT) and 2-sec-butyl-4,5-dihydrothiazole (SBT) for 1% and 100% (v/v) concentrations. We used a combination of in vivo, in situ and in silico approaches to investigate ORs with distinct sensitivities to the tested odorants. We examined Olfr923, which we identified to be one of the most sensitive ACT ORs based on our pS6-IP-Seq data. Using a mouse line that genetically labels Olfr923 positive axons, we provide evidence that ACT activates the Olfr923 glomerulus in the olfactory bulb. This study sheds light on the active process in which unique OR repertoires may collectively facilitate the discrimination of odorant concentrations. Together, these odorant receptors may shape the dynamic aspects of olfactory sensitivity and facilitate odorant intensity coding.
Item Open Access Decoding the olfactory map: targeted transcriptomics link olfactory receptors to glomeruli(2022) Zhu, Kevin WilliamThe external world is perceived via sensory receptors arranged in highly organized systems according to functional strategies, which in turn reflect features of critical importance to both the sense and the animal. The receptor organization and functional strategies of visual, auditory, and touch sensory systems have been mapped, but such a map for olfaction, the sense of smell, has remained elusive despite a concrete understanding of the fundamental principles of the system’s architecture.Sensory processing in olfactory systems is organized across olfactory bulb glomeruli, wherein axons of peripheral sensory neurons expressing the same olfactory receptor co-terminate to transmit receptor-specific activity to central neurons. Understanding how receptors map to glomeruli is therefore critical to understanding olfaction. High-throughput spatial transcriptomics is a rapidly advancing field, but low-abundance olfactory receptor expression within glomeruli has previously precluded high-throughput mapping of receptors to glomeruli. In Chapter 2, I describe the development and application of a novel method which combines sequential sectioning along the anteroposterior, dorsoventral, and mediolateral axes with target capture enrichment sequencing to overcome low-abundance target expression. This strategy spatially mapped 86% of olfactory receptors across the olfactory bulb and uncovered a relationship between olfactory receptor sequence and glomerular position.
Item Open Access Mechanisms by Which Early Nutrition Influences Spatial Memory, Adult Neurogenesis, and Response to Hippocampal Injury(2010) Wong-Goodrich, Sarah Jeanne EvensAltered dietary availability of the vital nutrient choline during early development leads to persistent changes in brain and behavior throughout adulthood. Prenatal choline supplementation during embryonic days (ED) 12-17 of the rodent gestation period enhances memory capacity and precision and hippocampal plasticity in adulthood, and protects against spatial learning and memory deficits shortly after excitotoxic seizures, whereas prenatal choline deficiency can compromise hippocampal memory and plasticity in adulthood. Recent evidence from our laboratory has determined that lifelong proliferation of newborn neurons in the adult hippocampus, a feature of adult hippocampal plasticity that has been implicated in some aspects of learning and memory, is modulated by early choline availability. Prenatal choline's effects on adult neurogenesis may be one mechanism for diet-induced cognitive changes throughout life and in response to injury, although little is known about the mechanisms underlying how prenatal choline alters adult neurogenesis or the neural mechanisms underlying prenatal choline supplementation's protection against cognitive deficits after seizures. To address these issues, the present set of experiments investigated how prenatal choline availability modulates specific properties of neurogenesis in the adult brain (in the intact brain and in response to injury), as well as hippocampal markers known to change in response to excitotoxin-induced seizures, and sought to relate changes in neurogenesis and in neuropathological markers following injury to changes in performance on spatial learning and memory tasks. Subjects in each experiment were adult offspring from rat dams that received either a control diet or diet supplemented with choline chloride or deficient of choline on ED 12-17. To measure neurogenesis, rats were given injections of the mitotic marker bromodeoxyurdine to label dividing cells in the hippocampus. Prenatal choline supplementation enhanced several properties of basal adult hippocampal neurogenesis (cell division and survival, neural stem/progenitor cell phenotype and proliferative capacity, trophic support), and this increase was associated with improvements in spatial working memory retention in a delayed-matching-to-place water maze task. In contrast, prenatal choline deficiency had little effect on basal adult hippocampal neurogenesis, and no effect on spatial memory performance. Prenatal choline supplementation also enhanced olfactory bulb neurogenesis without altering cell proliferation in the subventricular zone, while prenatal choline deficiency had no effect on either measure, showing for the first time that prenatal choline's effects on adult neurogenesis is similarly expressed in another distinct neurogenic region of the adult brain. Altered prenatal choline availability also modulated the hippocampal response to kainic acid-induced seizures where supplementation attenuated while deficiency had no effect on the injury-induced proliferative response of the dentate gyrus shortly after injury. Prenatal choline supplementation also attenuated other markers of hippocampal neuropathology shortly after seizures and promoted the long-term hippocampal recovery from seizures months after injury, including rescuing declines in adult hippocampal neurogenesis and in spatial memory performance in a standard water maze task. Taken together, these findings demonstrate a robust neuroprotective effect of prenatal choline supplementation that may be driven by enhanced adult hippocampal plasticity and trophic support prior to injury, and shed light on the mechanisms underlying how prenatal choline availability alters adult hippocampal neurogenesis, which may contribute to changes in memory capacity and precision both throughout life and following neural assault.