Browsing by Subject "Organ Specificity"
Now showing 1 - 17 of 17
- Results Per Page
- Sort Options
Item Open Access A beta-adrenergic receptor kinase-like enzyme is involved in olfactory signal termination.(Proc Natl Acad Sci U S A, 1993-02-15) Schleicher, S; Boekhoff, I; Arriza, J; Lefkowitz, RJ; Breer, HWe have previously shown that second-messenger-dependent kinases (cAMP-dependent kinase, protein kinase C) in the olfactory system are essential in terminating second-messenger signaling in response to odorants. We now document that subtype 2 of the beta-adrenergic receptor kinase (beta ARK) is also involved in this process. By using subtype-specific antibodies to beta ARK-1 and beta ARK-2, we show that beta ARK-2 is preferentially expressed in the olfactory epithelium in contrast to findings in most other tissues. Heparin, an inhibitor of beta ARK, as well as anti-beta ARK-2 antibodies, (i) completely prevents the rapid decline of second-messenger signals (desensitization) that follows odorant stimulation and (ii) strongly inhibits odorant-induced phosphorylation of olfactory ciliary proteins. In contrast, beta ARK-1 antibodies are without effect. Inhibitors of protein kinase A and protein kinase C also block odorant-induced desensitization and phosphorylation. These data suggest that a sequential interplay of second-messenger-dependent and receptor-specific kinases is functionally involved in olfactory desensitization.Item Open Access A complex intronic enhancer regulates expression of the CFTR gene by direct interaction with the promoter.(J Cell Mol Med, 2009-04) Ott, Christopher J; Suszko, Magdalena; Blackledge, Neil P; Wright, Jane E; Crawford, Gregory E; Harris, AnnGenes can maintain spatiotemporal expression patterns by long-range interactions between cis-acting elements. The cystic fibrosis transmembrane conductance regulator gene (CFTR) is expressed primarily in epithelial cells. An element located within a DNase I-hypersensitive site (DHS) 10 kb into the first intron was previously shown to augment CFTR promoter activity in a tissue-specific manner. Here, we reveal the mechanism by which this element influences CFTR transcription. We employed a high-resolution method of mapping DHS using tiled microarrays to accurately locate the intron 1 DHS. Transfection of promoter-reporter constructs demonstrated that the element displays classical tissue-specific enhancer properties and can independently recruit factors necessary for transcription initiation. In vitro DNase I footprinting analysis identified a protected region that corresponds to a conserved, predicted binding site for hepatocyte nuclear factor 1 (HNF1). We demonstrate by electromobility shift assays (EMSA) and chromatin immunoprecipitation (ChIP) that HNF1 binds to this element both in vitro and in vivo. Moreover, using chromosome conformation capture (3C) analysis, we show that this element interacts with the CFTR promoter in CFTR-expressing cells. These data provide the first insight into the three- dimensional (3D) structure of the CFTR locus and confirm the contribution of intronic cis-acting elements to the regulation of CFTR gene expression.Item Open Access Association between novel PLCE1 variants identified in published esophageal cancer genome-wide association studies and risk of squamous cell carcinoma of the head and neck.(BMC cancer, 2011-06-20) Ma, Hongxia; Wang, Li-E; Liu, Zhensheng; Sturgis, Erich M; Wei, QingyiPhospholipase C epsilon 1 (PLCE1) (an effector of Ras) belonging to the phospholipase family plays crucial roles in carcinogenesis and progression of several cancers, including squamous cell carcinoma of the head and neck (SCCHN). A single nucleotide polymorphism (SNP, rs2274223) in PLCE1 has been identified as a novel susceptibility locus in genome-wide association studies (GWAS) of esophageal squamous cell carcinoma (ESCC) and gastric cardia adenocarcinoma (GCA) that share similar risk factors with SCCHN. Therefore, we investigated the association between potentially functional SNPs in PLCE1 and susceptibility to SCCHN.We genotyped three potentially functional SNPs (rs2274223A/G, rs3203713A/G and rs11599672T/G) of PLCE1 in 1,098 SCCHN patients and 1,090 controls matched by age and sex in a non-Hispanic white population.Although none of three SNPs was alone significantly associated with overall risk of SCCHN, their combined effects of risk alleles (rs2274223G, rs3203713G and rs11599672G) were found to be associated with risk of SCCHN in a locus-dose effect manner (Ptrend=0.046), particularly for non-oropharyngeal tumors (Ptrend=0.017); specifically, rs2274223 was associated with a significantly increased risk (AG vs. AA: adjusted OR=1.29, 95% CI=1.01-1.64; AG/GG vs. AA: adjusted OR=1.30, 95% CI=1.03-1.64), while rs11599672 was associated with a significantly decreased risk (GG vs. TT: adjusted OR=0.54, 95% CI=0.34-0.86; TG/GG vs. TT: adjusted OR=0.76, 95% CI=0.61-0.95).Our findings suggest that PLCE1 variants may have an effect on risk of SCCHN associated with tobacco and alcohol exposure, particularly for those tumors arising at non-oropharyngeal sites. These findings, although need to be validated by larger studies, are consistent with those in esophageal and gastric cancers.Item Restricted beta2-Adrenergic receptor regulation by GIT1, a G protein-coupled receptor kinase-associated ADP ribosylation factor GTPase-activating protein.(Proc Natl Acad Sci U S A, 1998-11-24) Premont, RT; Claing, A; Vitale, N; Freeman, JL; Pitcher, JA; Patton, WA; Moss, J; Vaughan, M; Lefkowitz, RJG protein-coupled receptor activation leads to the membrane recruitment and activation of G protein-coupled receptor kinases, which phosphorylate receptors and lead to their inactivation. We have identified a novel G protein-coupled receptor kinase-interacting protein, GIT1, that is a GTPase-activating protein (GAP) for the ADP ribosylation factor (ARF) family of small GTP-binding proteins. Overexpression of GIT1 leads to reduced beta2-adrenergic receptor signaling and increased receptor phosphorylation, which result from reduced receptor internalization and resensitization. These cellular effects of GIT1 require its intact ARF GAP activity and do not reflect regulation of GRK kinase activity. These results suggest an essential role for ARF proteins in regulating beta2-adrenergic receptor endocytosis. Moreover, they provide a mechanism for integration of receptor activation and endocytosis through regulation of ARF protein activation by GRK-mediated recruitment of the GIT1 ARF GAP to the plasma membrane.Item Open Access COVID-19 tissue atlases reveal SARS-CoV-2 pathology and cellular targets.(Nature, 2021-07) Delorey, Toni M; Ziegler, Carly GK; Heimberg, Graham; Normand, Rachelly; Yang, Yiming; Segerstolpe, Åsa; Abbondanza, Domenic; Fleming, Stephen J; Subramanian, Ayshwarya; Montoro, Daniel T; Jagadeesh, Karthik A; Dey, Kushal K; Sen, Pritha; Slyper, Michal; Pita-Juárez, Yered H; Phillips, Devan; Biermann, Jana; Bloom-Ackermann, Zohar; Barkas, Nikolaos; Ganna, Andrea; Gomez, James; Melms, Johannes C; Katsyv, Igor; Normandin, Erica; Naderi, Pourya; Popov, Yury V; Raju, Siddharth S; Niezen, Sebastian; Tsai, Linus T-Y; Siddle, Katherine J; Sud, Malika; Tran, Victoria M; Vellarikkal, Shamsudheen K; Wang, Yiping; Amir-Zilberstein, Liat; Atri, Deepak S; Beechem, Joseph; Brook, Olga R; Chen, Jonathan; Divakar, Prajan; Dorceus, Phylicia; Engreitz, Jesse M; Essene, Adam; Fitzgerald, Donna M; Fropf, Robin; Gazal, Steven; Gould, Joshua; Grzyb, John; Harvey, Tyler; Hecht, Jonathan; Hether, Tyler; Jané-Valbuena, Judit; Leney-Greene, Michael; Ma, Hui; McCabe, Cristin; McLoughlin, Daniel E; Miller, Eric M; Muus, Christoph; Niemi, Mari; Padera, Robert; Pan, Liuliu; Pant, Deepti; Pe'er, Carmel; Pfiffner-Borges, Jenna; Pinto, Christopher J; Plaisted, Jacob; Reeves, Jason; Ross, Marty; Rudy, Melissa; Rueckert, Erroll H; Siciliano, Michelle; Sturm, Alexander; Todres, Ellen; Waghray, Avinash; Warren, Sarah; Zhang, Shuting; Zollinger, Daniel R; Cosimi, Lisa; Gupta, Rajat M; Hacohen, Nir; Hibshoosh, Hanina; Hide, Winston; Price, Alkes L; Rajagopal, Jayaraj; Tata, Purushothama Rao; Riedel, Stefan; Szabo, Gyongyi; Tickle, Timothy L; Ellinor, Patrick T; Hung, Deborah; Sabeti, Pardis C; Novak, Richard; Rogers, Robert; Ingber, Donald E; Jiang, Z Gordon; Juric, Dejan; Babadi, Mehrtash; Farhi, Samouil L; Izar, Benjamin; Stone, James R; Vlachos, Ioannis S; Solomon, Isaac H; Ashenberg, Orr; Porter, Caroline BM; Li, Bo; Shalek, Alex K; Villani, Alexandra-Chloé; Rozenblatt-Rosen, Orit; Regev, AvivCOVID-19, which is caused by SARS-CoV-2, can result in acute respiratory distress syndrome and multiple organ failure1-4, but little is known about its pathophysiology. Here we generated single-cell atlases of 24 lung, 16 kidney, 16 liver and 19 heart autopsy tissue samples and spatial atlases of 14 lung samples from donors who died of COVID-19. Integrated computational analysis uncovered substantial remodelling in the lung epithelial, immune and stromal compartments, with evidence of multiple paths of failed tissue regeneration, including defective alveolar type 2 differentiation and expansion of fibroblasts and putative TP63+ intrapulmonary basal-like progenitor cells. Viral RNAs were enriched in mononuclear phagocytic and endothelial lung cells, which induced specific host programs. Spatial analysis in lung distinguished inflammatory host responses in lung regions with and without viral RNA. Analysis of the other tissue atlases showed transcriptional alterations in multiple cell types in heart tissue from donors with COVID-19, and mapped cell types and genes implicated with disease severity based on COVID-19 genome-wide association studies. Our foundational dataset elucidates the biological effect of severe SARS-CoV-2 infection across the body, a key step towards new treatments.Item Open Access Epigenetic basis of oncogenic-Kras-mediated epithelial-cellular proliferation and plasticity.(Developmental cell, 2022-02) Kadur Lakshminarasimha Murthy, Preetish; Xi, Rui; Arguijo, Diana; Everitt, Jeffrey I; Kocak, Dewran D; Kobayashi, Yoshihiko; Bozec, Aline; Vicent, Silvestre; Ding, Shengli; Crawford, Gregory E; Hsu, David; Tata, Purushothama Rao; Reddy, Timothy; Shen, XilingOncogenic Kras induces a hyper-proliferative state that permits cells to progress to neoplasms in diverse epithelial tissues. Depending on the cell of origin, this also involves lineage transformation. Although a multitude of downstream factors have been implicated in these processes, the precise chronology of molecular events controlling them remains elusive. Using mouse models, primary human tissues, and cell lines, we show that, in Kras-mutant alveolar type II cells (AEC2), FOSL1-based AP-1 factor guides the mSWI/SNF complex to increase chromatin accessibility at genomic loci controlling the expression of genes necessary for neoplastic transformation. We identified two orthogonal processes in Kras-mutant distal airway club cells. The first promoted their transdifferentiation into an AEC2-like state through NKX2.1, and the second controlled oncogenic transformation through the AP-1 complex. Our results suggest that neoplasms retain an epigenetic memory of their cell of origin through cell-type-specific transcription factors. Our analysis showed that a cross-tissue-conserved AP-1-dependent chromatin remodeling program regulates carcinogenesis.Item Open Access Evaluating testosterone as a phenotypic integrator: From tissues to individuals to species.(Molecular and cellular endocrinology, 2019-10) Lipshutz, SE; George, EM; Bentz, AB; Rosvall, KAHormones have the potential to bring about rapid phenotypic change; however, they are highly conserved over millions of years of evolution. Here, we examine the evolution of hormone-mediated phenotypes, and the extent to which regulation is achieved via independence or integration of the many components of endocrine systems. We focus on the sex steroid testosterone (T), its cognate receptor (androgen receptor) and related endocrine components. We pose predictions about the mechanisms underlying phenotypic integration, including coordinated sensitivity to T within and among tissues and along the HPG axis. We then assess these predictions with case studies from wild birds, asking whether gene expression related to androgenic signaling naturally co-varies among individuals in ways that would promote phenotypic integration. Finally, we review how mechanisms of integration and independence vary over developmental or evolutionary time, and we find limited support for integration.Item Open Access Gene therapy for glycogen storage diseases.(Human molecular genetics, 2019-10) Kishnani, Priya S; Sun, Baodong; Koeberl, Dwight DThe focus of this review is the development of gene therapy for glycogen storage diseases (GSDs). GSD results from the deficiency of specific enzymes involved in the storage and retrieval of glucose in the body. Broadly, GSDs can be divided into types that affect liver or muscle or both tissues. For example, glucose-6-phosphatase (G6Pase) deficiency in GSD type Ia (GSD Ia) affects primarily the liver and kidney, while acid α-glucosidase (GAA) deficiency in GSD II causes primarily muscle disease. The lack of specific therapy for the GSDs has driven efforts to develop new therapies for these conditions. Gene therapy needs to replace deficient enzymes in target tissues, which has guided the planning of gene therapy experiments. Gene therapy with adeno-associated virus (AAV) vectors has demonstrated appropriate tropism for target tissues, including the liver, heart and skeletal muscle in animal models for GSD. AAV vectors transduced liver and kidney in GSD Ia and striated muscle in GSD II mice to replace the deficient enzyme in each disease. Gene therapy has been advanced to early phase clinical trials for the replacement of G6Pase in GSD Ia and GAA in GSD II (Pompe disease). Other GSDs have been treated in proof-of-concept studies, including GSD III, IV and V. The future of gene therapy appears promising for the GSDs, promising to provide more efficacious therapy for these disorders in the foreseeable future.Item Unknown Immunodominant liver-specific expression suppresses transgene-directed immune responses in murine pompe disease.(Hum Gene Ther, 2012-05) Zhang, P; Sun, B; Osada, T; Rodriguiz, R; Yang, XY; Luo, X; Kemper, AR; Clay, TM; Koeberl, DDPompe disease can be treated effectively, if immune tolerance to enzyme replacement therapy (ERT) with acid α-glucosidase (GAA) is present. An adeno-associated viral (AAV) vector carrying a liver-specific regulatory cassette to drive GAA expression (AAV-LSPhGAA) established immune tolerance in GAA knockout (KO) mice, whereas ubiquitous expression with AAV-CBhGAA provoked immune responses. Therefore, we investigated the hypothesis that immune tolerance induced by hepatic-restricted expression was dominant. AAV-LSPhGAA and AAV-CBhGAA were administered singly or in combination to groups of adult GAA-KO mice, and AAV-LSPhGAA induced immune tolerance even in combination with AAV-CBhGAA. The dual vector approach to GAA expression improved biochemical correction of GAA deficiency and glycogen accumulations at 18 weeks, and improved motor function testing including wire-hang and grip-strength testing. The greatest efficacy was demonstrated by dual vector administration, when both vectors were pseudotyped as AAV8. T cells from mice injected with AAV-LSPhGAA failed to proliferate at all after an immune challenge with GAA and adjuvant, whereas mock-treated GAA-KO mice mounted vigorous T cell proliferation. Unlike AAV-LSPhGAA, AAV-CBhGAA induced selective cytokine and chemokine expression in liver and spleen after the immune challenge. AAV-CBhGAA transduced dendritic cells and expressed high-level GAA, whereas AAV-LSPhGAA failed to express GAA in dendritic cells. The level of transduction in liver was much higher after dual AAV8 vector administration at 18 weeks, in comparison with either vector alone. Dual vector administration failed to provoke antibody formation in response to GAA expression with AAV-CBhGAA; however, hepatic-restricted expression from dual vector expression did not prevent antibody formation after a strong immune challenge with GAA and adjuvant. The relevance of immune tolerance to gene therapy in Pompe disease indicates that hepatic expression might best be combined with nonhepatic expression, achieving the benefits of ubiquitous expression in addition to evading deleterious immune responses.Item Open Access Latent factor analysis to discover pathway-associated putative segmental aneuploidies in human cancers.(PLoS Comput Biol, 2010-09-02) Lucas, Joseph E; Kung, Hsiu-Ni; Chi, Jen-Tsan ATumor microenvironmental stresses, such as hypoxia and lactic acidosis, play important roles in tumor progression. Although gene signatures reflecting the influence of these stresses are powerful approaches to link expression with phenotypes, they do not fully reflect the complexity of human cancers. Here, we describe the use of latent factor models to further dissect the stress gene signatures in a breast cancer expression dataset. The genes in these latent factors are coordinately expressed in tumors and depict distinct, interacting components of the biological processes. The genes in several latent factors are highly enriched in chromosomal locations. When these factors are analyzed in independent datasets with gene expression and array CGH data, the expression values of these factors are highly correlated with copy number alterations (CNAs) of the corresponding BAC clones in both the cell lines and tumors. Therefore, variation in the expression of these pathway-associated factors is at least partially caused by variation in gene dosage and CNAs among breast cancers. We have also found the expression of two latent factors without any chromosomal enrichment is highly associated with 12q CNA, likely an instance of "trans"-variations in which CNA leads to the variations in gene expression outside of the CNA region. In addition, we have found that factor 26 (1q CNA) is negatively correlated with HIF-1alpha protein and hypoxia pathways in breast tumors and cell lines. This agrees with, and for the first time links, known good prognosis associated with both a low hypoxia signature and the presence of CNA in this region. Taken together, these results suggest the possibility that tumor segmental aneuploidy makes significant contributions to variation in the lactic acidosis/hypoxia gene signatures in human cancers and demonstrate that latent factor analysis is a powerful means to uncover such a linkage.Item Open Access Quantification of the whole-body burden of radiographic osteoarthritis using factor analysis.(Arthritis Res Ther, 2011) Nelson, Amanda E; DeVellis, Robert F; Renner, Jordan B; Schwartz, Todd A; Conaghan, Philip G; Kraus, Virginia B; Jordan, Joanne MINTRODUCTION: Although osteoarthritis (OA) commonly involves multiple joints, no widely accepted method for quantifying whole-body OA burden exists. Therefore, our aim was to apply factor analytic methods to radiographic OA (rOA) grades across multiple joint sites, representing both presence and severity, to quantify the burden of rOA. METHODS: We used cross-sectional data from the Johnston County Osteoarthritis Project. The sample (n = 2092) had a mean age of 65 ± 11 years, body mass index (BMI) 31 ± 7 kg/m2, with 33% men and 34% African Americans. A single expert reader (intra-rater κ = 0.89) provided radiographic grades based on standard atlases for the hands (30 joints, including bilateral distal and proximal interphalangeal [IP], thumb IP, metacarpophalangeal [MCP] and carpometacarpal [CMC] joints), knees (patellofemoral and tibiofemoral, 4 joints), hips (2 joints), and spine (5 levels [L1/2 to L5/S1]). All grades were entered into an exploratory common factor analysis as continuous variables. Stratified factor analyses were used to look for differences by gender, race, age, and cohort subgroups. RESULTS: Four factors were identified as follows: IP/CMC factor (20 joints), MCP factor (8 joints), Knee factor (4 joints), Spine factor (5 levels). These factors had high internal consistency reliability (Cronbach's α range 0.80 to 0.95), were not collapsible into a single factor, and had moderate between-factor correlations (Pearson correlation coefficient r = 0.24 to 0.44). There were no major differences in factor structure when stratified by subgroup. CONCLUSIONS: The 4 factors obtained in this analysis indicate that the variables contained within each factor share an underlying cause, but the 4 factors are distinct, suggesting that combining these joint sites into one overall measure is not appropriate. Using such factors to reflect multi-joint rOA in statistical models can reduce the number of variables needed and increase precision.Item Open Access Single-cell meta-analysis of SARS-CoV-2 entry genes across tissues and demographics.(Nature medicine, 2021-03) Muus, Christoph; Luecken, Malte D; Eraslan, Gökcen; Sikkema, Lisa; Waghray, Avinash; Heimberg, Graham; Kobayashi, Yoshihiko; Vaishnav, Eeshit Dhaval; Subramanian, Ayshwarya; Smillie, Christopher; Jagadeesh, Karthik A; Duong, Elizabeth Thu; Fiskin, Evgenij; Torlai Triglia, Elena; Ansari, Meshal; Cai, Peiwen; Lin, Brian; Buchanan, Justin; Chen, Sijia; Shu, Jian; Haber, Adam L; Chung, Hattie; Montoro, Daniel T; Adams, Taylor; Aliee, Hananeh; Allon, Samuel J; Andrusivova, Zaneta; Angelidis, Ilias; Ashenberg, Orr; Bassler, Kevin; Bécavin, Christophe; Benhar, Inbal; Bergenstråhle, Joseph; Bergenstråhle, Ludvig; Bolt, Liam; Braun, Emelie; Bui, Linh T; Callori, Steven; Chaffin, Mark; Chichelnitskiy, Evgeny; Chiou, Joshua; Conlon, Thomas M; Cuoco, Michael S; Cuomo, Anna SE; Deprez, Marie; Duclos, Grant; Fine, Denise; Fischer, David S; Ghazanfar, Shila; Gillich, Astrid; Giotti, Bruno; Gould, Joshua; Guo, Minzhe; Gutierrez, Austin J; Habermann, Arun C; Harvey, Tyler; He, Peng; Hou, Xiaomeng; Hu, Lijuan; Hu, Yan; Jaiswal, Alok; Ji, Lu; Jiang, Peiyong; Kapellos, Theodoros S; Kuo, Christin S; Larsson, Ludvig; Leney-Greene, Michael A; Lim, Kyungtae; Litviňuková, Monika; Ludwig, Leif S; Lukassen, Soeren; Luo, Wendy; Maatz, Henrike; Madissoon, Elo; Mamanova, Lira; Manakongtreecheep, Kasidet; Leroy, Sylvie; Mayr, Christoph H; Mbano, Ian M; McAdams, Alexi M; Nabhan, Ahmad N; Nyquist, Sarah K; Penland, Lolita; Poirion, Olivier B; Poli, Sergio; Qi, CanCan; Queen, Rachel; Reichart, Daniel; Rosas, Ivan; Schupp, Jonas C; Shea, Conor V; Shi, Xingyi; Sinha, Rahul; Sit, Rene V; Slowikowski, Kamil; Slyper, Michal; Smith, Neal P; Sountoulidis, Alex; Strunz, Maximilian; Sullivan, Travis B; Sun, Dawei; Talavera-López, Carlos; Tan, Peng; Tantivit, Jessica; Travaglini, Kyle J; Tucker, Nathan R; Vernon, Katherine A; Wadsworth, Marc H; Waldman, Julia; Wang, Xiuting; Xu, Ke; Yan, Wenjun; Zhao, William; Ziegler, Carly GK; NHLBI LungMap Consortium; Human Cell Atlas Lung Biological NetworkAngiotensin-converting enzyme 2 (ACE2) and accessory proteases (TMPRSS2 and CTSL) are needed for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cellular entry, and their expression may shed light on viral tropism and impact across the body. We assessed the cell-type-specific expression of ACE2, TMPRSS2 and CTSL across 107 single-cell RNA-sequencing studies from different tissues. ACE2, TMPRSS2 and CTSL are coexpressed in specific subsets of respiratory epithelial cells in the nasal passages, airways and alveoli, and in cells from other organs associated with coronavirus disease 2019 (COVID-19) transmission or pathology. We performed a meta-analysis of 31 lung single-cell RNA-sequencing studies with 1,320,896 cells from 377 nasal, airway and lung parenchyma samples from 228 individuals. This revealed cell-type-specific associations of age, sex and smoking with expression levels of ACE2, TMPRSS2 and CTSL. Expression of entry factors increased with age and in males, including in airway secretory cells and alveolar type 2 cells. Expression programs shared by ACE2+TMPRSS2+ cells in nasal, lung and gut tissues included genes that may mediate viral entry, key immune functions and epithelial-macrophage cross-talk, such as genes involved in the interleukin-6, interleukin-1, tumor necrosis factor and complement pathways. Cell-type-specific expression patterns may contribute to the pathogenesis of COVID-19, and our work highlights putative molecular pathways for therapeutic intervention.Item Open Access Site-specific retinoic acid production in the brain of adult songbirds.(Neuron, 2000-08) Denisenko-Nehrbass, NI; Jarvis, E; Scharff, C; Nottebohm, F; Mello, CVThe song system of songbirds, a set of brain nuclei necessary for song learning and production, has distinctive morphological and functional properties. Utilizing differential display, we searched for molecular components involved in song system regulation. We identified a cDNA (zRalDH) that encodes a class 1 aldehyde dehydrogenase. zRalDH was highly expressed in various song nuclei and synthesized retinoic acid efficiently. Brain areas expressing zRalDH generated retinoic acid. Within song nucleus HVC, only projection neurons not undergoing adult neurogenesis expressed zRalDH. Blocking zRalDH activity in the HVC of juveniles interfered with normal song development. Our results provide conclusive evidence for localized retinoic acid synthesis in an adult vertebrate brain and indicate that the retinoic acid-generating system plays a significant role in the maturation of a learned behavior.Item Open Access The upstream enhancer elements of the G6PC promoter are critical for optimal G6PC expression in murine glycogen storage disease type Ia.(Mol Genet Metab, 2013-11) Lee, Young Mok; Pan, Chi-Jiunn; Koeberl, Dwight D; Mansfield, Brian C; Chou, Janice YGlycogen storage disease type-Ia (GSD-Ia) patients deficient in glucose-6-phosphatase-α (G6Pase-α or G6PC) manifest impaired glucose homeostasis characterized by fasting hypoglycemia, growth retardation, hepatomegaly, nephromegaly, hyperlipidemia, hyperuricemia, and lactic acidemia. Two efficacious recombinant adeno-associated virus pseudotype 2/8 (rAAV8) vectors expressing human G6Pase-α have been independently developed. One is a single-stranded vector containing a 2864-bp of the G6PC promoter/enhancer (rAAV8-GPE) and the other is a double-stranded vector containing a shorter 382-bp minimal G6PC promoter/enhancer (rAAV8-miGPE). To identify the best construct, a direct comparison of the rAAV8-GPE and the rAAV8-miGPE vectors was initiated to determine the best vector to take forward into clinical trials. We show that the rAAV8-GPE vector directed significantly higher levels of hepatic G6Pase-α expression, achieved greater reduction in hepatic glycogen accumulation, and led to a better toleration of fasting in GSD-Ia mice than the rAAV8-miGPE vector. Our results indicated that additional control elements in the rAAV8-GPE vector outweigh the gains from the double-stranded rAAV8-miGPE transduction efficiency, and that the rAAV8-GPE vector is the current choice for clinical translation in human GSD-Ia.Item Open Access Tissue-specific genetic control of splicing: implications for the study of complex traits.(PLoS Biol, 2008-12-23) Heinzen, Erin L; Ge, Dongliang; Cronin, Kenneth D; Maia, Jessica M; Shianna, Kevin V; Gabriel, Willow N; Welsh-Bohmer, Kathleen A; Hulette, Christine M; Denny, Thomas N; Goldstein, David BNumerous genome-wide screens for polymorphisms that influence gene expression have provided key insights into the genetic control of transcription. Despite this work, the relevance of specific polymorphisms to in vivo expression and splicing remains unclear. We carried out the first genome-wide screen, to our knowledge, for SNPs that associate with alternative splicing and gene expression in human primary cells, evaluating 93 autopsy-collected cortical brain tissue samples with no defined neuropsychiatric condition and 80 peripheral blood mononucleated cell samples collected from living healthy donors. We identified 23 high confidence associations with total expression and 80 with alternative splicing as reflected by expression levels of specific exons. Fewer than 50% of the implicated SNPs however show effects in both tissue types, reflecting strong evidence for distinct genetic control of splicing and expression in the two tissue types. The data generated here also suggest the possibility that splicing effects may be responsible for up to 13 out of 84 reported genome-wide significant associations with human traits. These results emphasize the importance of establishing a database of polymorphisms affecting splicing and expression in primary tissue types and suggest that splicing effects may be of more phenotypic significance than overall gene expression changes.Item Open Access Transcription factors MYOCD, SRF, Mesp1 and SMARCD3 enhance the cardio-inducing effect of GATA4, TBX5, and MEF2C during direct cellular reprogramming.(PLoS One, 2013) Christoforou, Nicolas; Chellappan, Malathi; Adler, Andrew F; Kirkton, Robert D; Kirkton, Robert D; Wu, Tianyi; Addis, Russell C; Bursac, Nenad; Leong, Kam WTransient overexpression of defined combinations of master regulator genes can effectively induce cellular reprogramming: the acquisition of an alternative predicted phenotype from a differentiated cell lineage. This can be of particular importance in cardiac regenerative medicine wherein the heart lacks the capacity to heal itself, but simultaneously contains a large pool of fibroblasts. In this study we determined the cardio-inducing capacity of ten transcription factors to actuate cellular reprogramming of mouse embryonic fibroblasts into cardiomyocyte-like cells. Overexpression of transcription factors MYOCD and SRF alone or in conjunction with Mesp1 and SMARCD3 enhanced the basal but necessary cardio-inducing effect of the previously reported GATA4, TBX5, and MEF2C. In particular, combinations of five or seven transcription factors enhanced the activation of cardiac reporter vectors, and induced an upregulation of cardiac-specific genes. Global gene expression analysis also demonstrated a significantly greater cardio-inducing effect when the transcription factors MYOCD and SRF were used. Detection of cross-striated cells was highly dependent on the cell culture conditions and was enhanced by the addition of valproic acid and JAK inhibitor. Although we detected Ca(2+) transient oscillations in the reprogrammed cells, we did not detect significant changes in resting membrane potential or spontaneously contracting cells. This study further elucidates the cardio-inducing effect of the transcriptional networks involved in cardiac cellular reprogramming, contributing to the ongoing rational design of a robust protocol required for cardiac regenerative therapies.Item Open Access Transient Receptor Potential Vanilloid 4 Ion Channel Functions as a Pruriceptor in Epidermal Keratinocytes to Evoke Histaminergic Itch.(J Biol Chem, 2016-05-06) Chen, Yong; Fang, Quan; Wang, Zilong; Zhang, Jennifer Y; MacLeod, Amanda S; Hall, Russell P; Liedtke, Wolfgang BTRPV4 ion channels function in epidermal keratinocytes and in innervating sensory neurons; however, the contribution of the channel in either cell to neurosensory function remains to be elucidated. We recently reported TRPV4 as a critical component of the keratinocyte machinery that responds to ultraviolet B (UVB) and functions critically to convert the keratinocyte into a pain-generator cell after excess UVB exposure. One key mechanism in keratinocytes was increased expression and secretion of endothelin-1, which is also a known pruritogen. Here we address the question of whether TRPV4 in skin keratinocytes functions in itch, as a particular form of "forefront" signaling in non-neural cells. Our results support this novel concept based on attenuated scratching behavior in response to histaminergic (histamine, compound 48/80, endothelin-1), not non-histaminergic (chloroquine) pruritogens in Trpv4 keratinocyte-specific and inducible knock-out mice. We demonstrate that keratinocytes rely on TRPV4 for calcium influx in response to histaminergic pruritogens. TRPV4 activation in keratinocytes evokes phosphorylation of mitogen-activated protein kinase, ERK, for histaminergic pruritogens. This finding is relevant because we observed robust anti-pruritic effects with topical applications of selective inhibitors for TRPV4 and also for MEK, the kinase upstream of ERK, suggesting that calcium influx via TRPV4 in keratinocytes leads to ERK-phosphorylation, which in turn rapidly converts the keratinocyte into an organismal itch-generator cell. In support of this concept we found that scratching behavior, evoked by direct intradermal activation of TRPV4, was critically dependent on TRPV4 expression in keratinocytes. Thus, TRPV4 functions as a pruriceptor-TRP in skin keratinocytes in histaminergic itch, a novel basic concept with translational-medical relevance.