Browsing by Subject "Organoids"
Now showing 1 - 10 of 10
Results Per Page
Sort Options
Item Open Access Cytotoxicity of alpha-particle-emitting astatine-211-labelled antibody in tumour spheroids: no effect of hyperthermia.(Br J Cancer, 1998-03) Hauck, ML; Larsen, RH; Welsh, PC; Zalutsky, MRThe high linear energy transfer, alpha-particle-emitting radionuclide astatine-211 (211At) is of interest for certain therapeutic applications; however, because of the 55- to 70-microm path length of its alpha-particles, achieving homogeneous tracer distribution is critical. Hyperthermia may enhance the therapeutic efficacy of alpha-particle endoradiotherapy if it can improve tracer distribution. In this study, we have investigated whether hyperthermia increased the cytotoxicity of an 211At-labelled monoclonal antibody (MAb) in tumour spheroids with a radius (approximately 100 microm) greater than the range of 211At alpha-particles. Hyperthermia for 1 h at 42 degrees C was used because this treatment itself resulted in no regrowth delay. Radiolabelled chimeric MAb 81C6 reactive with the extracellular matrix antigen tenascin was added to spheroids grown from the D-247 MG human glioma cell line at activity concentrations ranging from 0.125 to 250 kBq ml(-1). A significant regrowth delay was observed at 125 and 250 kBq ml(-1) in both hyperthermia-treated and untreated spheroids. For groups receiving hyperthermia, no increase in cytotoxicity was seen compared with normothermic controls at any activity concentration. These results and those from autoradiographs indicate that hyperthermia at 42 degrees C for 1 h had no significant effect on the uptake or distribution of this antitenascin MAb in D-247 MG spheroids.Item Open Access Human distal lung maps and lineage hierarchies reveal a bipotent progenitor.(Nature, 2022-04) Kadur Lakshminarasimha Murthy, Preetish; Sontake, Vishwaraj; Tata, Aleksandra; Kobayashi, Yoshihiko; Macadlo, Lauren; Okuda, Kenichi; Conchola, Ansley S; Nakano, Satoko; Gregory, Simon; Miller, Lisa A; Spence, Jason R; Engelhardt, John F; Boucher, Richard C; Rock, Jason R; Randell, Scott H; Tata, Purushothama RaoMapping the spatial distribution and molecular identity of constituent cells is essential for understanding tissue dynamics in health and disease. We lack a comprehensive map of human distal airways, including the terminal and respiratory bronchioles (TRBs), which are implicated in respiratory diseases1-4. Here, using spatial transcriptomics and single-cell profiling of microdissected distal airways, we identify molecularly distinct TRB cell types that have not-to our knowledge-been previously characterized. These include airway-associated LGR5+ fibroblasts and TRB-specific alveolar type-0 (AT0) cells and TRB secretory cells (TRB-SCs). Connectome maps and organoid-based co-cultures reveal that LGR5+ fibroblasts form a signalling hub in the airway niche. AT0 cells and TRB-SCs are conserved in primates and emerge dynamically during human lung development. Using a non-human primate model of lung injury, together with human organoids and tissue specimens, we show that alveolar type-2 cells in regenerating lungs transiently acquire an AT0 state from which they can differentiate into either alveolar type-1 cells or TRB-SCs. This differentiation programme is distinct from that identified in the mouse lung5-7. Our study also reveals mechanisms that drive the differentiation of the bipotent AT0 cell state into normal or pathological states. In sum, our findings revise human lung cell maps and lineage trajectories, and implicate an epithelial transitional state in primate lung regeneration and disease.Item Open Access JAK inhibitor blocks COVID-19 cytokine-induced JAK/STAT/APOL1 signaling in glomerular cells and podocytopathy in human kidney organoids.(JCI insight, 2022-06) Nystrom, Sarah E; Li, Guojie; Datta, Somenath; Soldano, Karen L; Silas, Daniel; Weins, Astrid; Hall, Gentzon; Thomas, David B; Olabisi, Opeyemi ACOVID-19 infection causes collapse of glomerular capillaries and loss of podocytes, culminating in a severe kidney disease called COVID-19-associated nephropathy (COVAN). The underlying mechanism of COVAN is unknown. We hypothesized that cytokines induced by COVID-19 trigger expression of pathogenic APOL1 via JAK/STAT signaling, resulting in podocyte loss and COVAN phenotype. Here, based on 9 biopsy-proven COVAN cases, we demonstrated for the first time, to the best of our knowledge, that APOL1 protein was abundantly expressed in podocytes and glomerular endothelial cells (GECs) of COVAN kidneys but not in controls. Moreover, a majority of patients with COVAN carried 2 APOL1 risk alleles. We show that recombinant cytokines induced by SARS-CoV-2 acted synergistically to drive APOL1 expression through the JAK/STAT pathway in primary human podocytes, GECs, and kidney micro-organoids derived from a carrier of 2 APOL1 risk alleles, but expression was blocked by a JAK1/2 inhibitor, baricitinib. We demonstrate that cytokine-induced JAK/STAT/APOL1 signaling reduced the viability of kidney organoid podocytes but was rescued by baricitinib. Together, our results support the conclusion that COVID-19-induced cytokines are sufficient to drive COVAN-associated podocytopathy via JAK/STAT/APOL1 signaling and that JAK inhibitors could block this pathogenic process. These findings suggest JAK inhibitors may have therapeutic benefits for managing cytokine-induced, APOL1-mediated podocytopathy.Item Open Access Patient-derived micro-organospheres enable clinical precision oncology.(Cell stem cell, 2022-06) Ding, Shengli; Hsu, Carolyn; Wang, Zhaohui; Natesh, Naveen R; Millen, Rosemary; Negrete, Marcos; Giroux, Nicholas; Rivera, Grecia O; Dohlman, Anders; Bose, Shree; Rotstein, Tomer; Spiller, Kassandra; Yeung, Athena; Sun, Zhiguo; Jiang, Chongming; Xi, Rui; Wilkin, Benjamin; Randon, Peggy M; Williamson, Ian; Nelson, Daniel A; Delubac, Daniel; Oh, Sehwa; Rupprecht, Gabrielle; Isaacs, James; Jia, Jingquan; Chen, Chao; Shen, John Paul; Kopetz, Scott; McCall, Shannon; Smith, Amber; Gjorevski, Nikolche; Walz, Antje-Christine; Antonia, Scott; Marrer-Berger, Estelle; Clevers, Hans; Hsu, David; Shen, XilingPatient-derived xenografts (PDXs) and patient-derived organoids (PDOs) have been shown to model clinical response to cancer therapy. However, it remains challenging to use these models to guide timely clinical decisions for cancer patients. Here, we used droplet emulsion microfluidics with temperature control and dead-volume minimization to rapidly generate thousands of micro-organospheres (MOSs) from low-volume patient tissues, which serve as an ideal patient-derived model for clinical precision oncology. A clinical study of recently diagnosed metastatic colorectal cancer (CRC) patients using an MOS-based precision oncology pipeline reliably assessed tumor drug response within 14 days, a timeline suitable for guiding treatment decisions in the clinic. Furthermore, MOSs capture original stromal cells and allow T cell penetration, providing a clinical assay for testing immuno-oncology (IO) therapies such as PD-1 blockade, bispecific antibodies, and T cell therapies on patient tumors.Item Open Access Progesterone Signaling in Endometrial Epithelial Organoids.(Cells, 2022-05) Hewitt, Sylvia C; Wu, San-Pin; Wang, Tianyuan; Young, Steven L; Spencer, Thomas E; DeMayo, Francesco JFor pregnancy to be established, uterine cells respond to the ovarian hormones, estrogen, and progesterone, via their nuclear receptors, the estrogen receptor (ESR1) and progesterone receptor (PGR). ESR1 and PGR regulate genes by binding chromatin at genes and at distal enhancer regions, which interact via dynamic 3-dimensional chromatin structures. Endometrial epithelial cells are the initial site of embryo attachment and invasion, and thus understanding the processes that yield their receptive state is important. Here, we cultured and treated organoids derived from human epithelial cells, isolated from endometrial biopsies, with estrogen and progesterone and evaluated their transcriptional profiles, their PGR cistrome, and their chromatin conformation. Progesterone attenuated estrogen-dependent gene responses but otherwise minimally impacted the organoid transcriptome. PGR ChIPseq peaks were co-localized with previously described organoid ESR1 peaks, and most PGR and ESR1 peaks were in B (inactive) compartment regions of chromatin. Significantly more ESR1 peaks were assigned to estrogen-regulated genes by considering chromatin loops identified using HiC than were identified using ESR1 peak location relative to closest genes. Overall, the organoids model allowed a definition of the chromatin regulatory components governing hormone responsiveness.Item Open Access Rapid tissue prototyping with micro-organospheres.(Stem cell reports, 2022-09) Wang, Zhaohui; Boretto, Matteo; Millen, Rosemary; Natesh, Naveen; Reckzeh, Elena S; Hsu, Carolyn; Negrete, Marcos; Yao, Haipei; Quayle, William; Heaton, Brook E; Harding, Alfred T; Bose, Shree; Driehuis, Else; Beumer, Joep; Rivera, Grecia O; van Ineveld, Ravian L; Gex, Donald; DeVilla, Jessica; Wang, Daisong; Puschhof, Jens; Geurts, Maarten H; Yeung, Athena; Hamele, Cait; Smith, Amber; Bankaitis, Eric; Xiang, Kun; Ding, Shengli; Nelson, Daniel; Delubac, Daniel; Rios, Anne; Abi-Hachem, Ralph; Jang, David; Goldstein, Bradley J; Glass, Carolyn; Heaton, Nicholas S; Hsu, David; Clevers, Hans; Shen, XilingIn vitro tissue models hold great promise for modeling diseases and drug responses. Here, we used emulsion microfluidics to form micro-organospheres (MOSs), which are droplet-encapsulated miniature three-dimensional (3D) tissue models that can be established rapidly from patient tissues or cells. MOSs retain key biological features and responses to chemo-, targeted, and radiation therapies compared with organoids. The small size and large surface-to-volume ratio of MOSs enable various applications including quantitative assessment of nutrient dependence, pathogen-host interaction for anti-viral drug screening, and a rapid potency assay for chimeric antigen receptor (CAR)-T therapy. An automated MOS imaging pipeline combined with machine learning overcomes plating variation, distinguishes tumorspheres from stroma, differentiates cytostatic versus cytotoxic drug effects, and captures resistant clones and heterogeneity in drug response. This pipeline is capable of robust assessments of drug response at individual-tumorsphere resolution and provides a rapid and high-throughput therapeutic profiling platform for precision medicine.Item Open Access Recent advances in lung organoid development and applications in disease modeling.(The Journal of clinical investigation, 2023-11) Vazquez-Armendariz, Ana I; Tata, Purushothama RaoOver the last decade, several organoid models have evolved to acquire increasing cellular, structural, and functional complexity. Advanced lung organoid platforms derived from various sources, including adult, fetal, and induced pluripotent stem cells, have now been generated, which more closely mimic the cellular architecture found within the airways and alveoli. In this regard, the establishment of novel protocols with optimized stem cell isolation and culture conditions has given rise to an array of models able to study key cellular and molecular players involved in lung injury and repair. In addition, introduction of other nonepithelial cellular components, such as immune, mesenchymal, and endothelial cells, and employment of novel precision gene editing tools have further broadened the range of applications for these systems by providing a microenvironment and/or phenotype closer to the desired in vivo scenario. Thus, these developments in organoid technology have enhanced our ability to model various aspects of lung biology, including pathogenesis of diseases such as chronic obstructive pulmonary disease, pulmonary fibrosis, cystic fibrosis, and infectious disease and host-microbe interactions, in ways that are often difficult to undertake using only in vivo models. In this Review, we summarize the latest developments in lung organoid technology and their applicability for disease modeling and outline their strengths, drawbacks, and potential avenues for future development.Item Open Access Regionally distinct progenitor cells in the lower airway give rise to neuroendocrine and multiciliated cells in the developing human lung.(Proceedings of the National Academy of Sciences of the United States of America, 2023-06) Conchola, Ansley S; Frum, Tristan; Xiao, Zhiwei; Hsu, Peggy P; Kaur, Kamika; Downey, Michael S; Hein, Renee FC; Miller, Alyssa J; Tsai, Yu-Hwai; Wu, Angeline; Holloway, Emily M; Anand, Abhinav; Murthy, Preetish Kadur Lakshminarasimha; Glass, Ian; Tata, Purushothama R; Spence, Jason RUsing scRNA-seq and microscopy, we describe a cell that is enriched in the lower airways of the developing human lung and identified by the unique coexpression of SCGB3A2/SFTPB/CFTR. To functionally interrogate these cells, we apply a single-cell barcode-based lineage tracing method, called CellTagging, to track the fate of SCGB3A2/SFTPB/CFTR cells during airway organoid differentiation in vitro. Lineage tracing reveals that these cells have a distinct differentiation potential from basal cells, giving rise predominantly to pulmonary neuroendocrine cells and a subset of multiciliated cells distinguished by high C6 and low MUC16 expression. Lineage tracing results are supported by studies using organoids and isolated cells from the lower noncartilaginous airway. We conclude that SCGB3A2/SFTPB/CFTR cells are enriched in the lower airways of the developing human lung and contribute to the epithelial diversity and heterogeneity in this region.Item Open Access Retinal Ganglion Cells With a Glaucoma OPTN(E50K) Mutation Exhibit Neurodegenerative Phenotypes when Derived from Three-Dimensional Retinal Organoids.(Stem cell reports, 2020-07) VanderWall, Kirstin B; Huang, Kang-Chieh; Pan, Yanling; Lavekar, Sailee S; Fligor, Clarisse M; Allsop, Anna R; Lentsch, Kelly A; Dang, Pengtao; Zhang, Chi; Tseng, Henry C; Cummins, Theodore R; Meyer, Jason SRetinal ganglion cells (RGCs) serve as the connection between the eye and the brain, with this connection disrupted in glaucoma. Numerous cellular mechanisms have been associated with glaucomatous neurodegeneration, and useful cellular models of glaucoma allow for the precise analysis of degenerative phenotypes. Human pluripotent stem cells (hPSCs) serve as powerful tools for studying human disease, particularly cellular mechanisms underlying neurodegeneration. Thus, efforts focused upon hPSCs with an E50K mutation in the Optineurin (OPTN) gene, a leading cause of inherited forms of glaucoma. CRISPR/Cas9 gene editing introduced the OPTN(E50K) mutation into existing lines of hPSCs, as well as generating isogenic controls from patient-derived lines. RGCs differentiated from OPTN(E50K) hPSCs exhibited numerous neurodegenerative deficits, including neurite retraction, autophagy dysfunction, apoptosis, and increased excitability. These results demonstrate the utility of OPTN(E50K) RGCs as an in vitro model of neurodegeneration, with the opportunity to develop novel therapeutic approaches for glaucoma.Item Open Access Stem Cell-Derived Models of Viral Infections in the Gastrointestinal Tract.(Viruses, 2018-03-10) Lanik, Wyatt E; Mara, Madison A; Mihi, Belgacem; Coyne, Carolyn B; Good, MistyStudies on the intestinal epithelial response to viral infection have previously been limited by the absence of in vitro human intestinal models that recapitulate the multicellular complexity of the gastrointestinal tract. Recent technological advances have led to the development of "mini-intestine" models, which mimic the diverse cellular nature and physiological activity of the small intestine. Utilizing adult or embryonic intestinal tissue, enteroid and organoid systems, respectively, represent an opportunity to effectively model cellular differentiation, proliferation, and interactions that are specific to the specialized environment of the intestine. Enteroid and organoid systems represent a significant advantage over traditional in vitro methods because they model the structure and function of the small intestine while also maintaining the genetic identity of the host. These more physiologic models also allow for novel approaches to investigate the interaction of enteric viruses with the gastrointestinal tract, making them ideal to study the complexities of host-pathogen interactions in this unique cellular environment. This review aims to provide a summary on the use of human enteroid and organoid systems as models to study virus pathogenesis.