Browsing by Subject "PACIFIC-NORTHWEST"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Evaluating the best available social science for natural resource management decision-making(Environmental Science and Policy, 2017-07-01) Charnley, S; Carothers, C; Satterfield, T; Levine, A; Poe, MR; Norman, K; Donatuto, J; Breslow, SJ; Mascia, MB; Levin, PS; Basurto, X; Hicks, CC; García-Quijano, C; St. Martin, K© 2017 Increasing recognition of the human dimensions of natural resource management issues, and of social and ecological sustainability and resilience as being inter-related, highlights the importance of applying social science to natural resource management decision-making. Moreover, a number of laws and regulations require natural resource management agencies to consider the “best available science” (BAS) when making decisions, including social science. Yet rarely do these laws and regulations define or identify standards for BAS, and those who have tried to fill the gap have done so from the standpoint of best available natural science. This paper proposes evaluative criteria for best available social science (BASS), explaining why a broader set of criteria than those used for natural science is needed. Although the natural and social sciences share many of the same evaluative criteria for BAS, they also exhibit some differences, especially where qualitative social science is concerned. Thus we argue that the evaluative criteria for BAS should expand to include those associated with diverse social science disciplines, particularly the qualitative social sciences. We provide one example from the USA of how a federal agency − the U.S. Forest Service − has attempted to incorporate BASS in responding to its BAS mandate associated with the national forest planning process, drawing on different types of scientific information and in light of these criteria. Greater attention to including BASS in natural resource management decision-making can contribute to better, more equitable, and more defensible management decisions and policies.Item Open Access Phylogeny, divergence time estimates, and phylogeography of the diploid species of the polypodium vulgare complex (Polypodiaceae)(Systematic Botany, 2014-01-01) Sigel, EM; Windham, MD; Haufler, CH; Pryer, KM© 2014 by the American Society of Plant Taxonomists. The Polypodium vulgare complex (Polypodiaceae) comprises a well-studied group of fern taxa whose members are cryptically differentiated morphologically and have generated a confusing and highly reticulate species cluster. Once considered a single species spanning much of northern Eurasia and North America, P. vulgare has been segregated into 17 diploid and polyploid taxa as a result of cytotaxonomic work, hybridization experiments, and isozyme studies conducted during the 20th century. Despite considerable effort, however, the evolutionary relationships among the diploid members of the P. vulgare complex remain poorly resolved. Here we infer a diploids-only phylogeny of the P. vulgare complex and related species to test previous hypotheses concerning relationships within Polypodium sensu stricto. Using sequence data from four plastid loci (atpA, rbcL, matK, and trnG-trnR), we recovered a monophyletic P. vulgare complex comprising four well-supported clades. The P. vulgare complex is resolved as sister to the Neotropical P. plesiosorum group and these, in turn, are sister to the Asian endemic Pleurosoriopsis makinoi. Using divergence time analyses incorporating previously derived age constraints and fossil data, we estimate an early Miocene origin for the P. vulgare complex and a late Miocene-Pliocene origin for the four major diploid lineages of the complex, with the majority of extant diploid species diversifying from the late Miocene through the Pleistocene. Finally, we use our node age estimates to reassess previous hypotheses, and to propose new hypotheses, about the historical events that shaped the diversity and current geographic distribution of the diploid species of the P. vulgare complex.