Browsing by Subject "PC12 Cells"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress.(Science (New York, N.Y.), 2005-02) Boyce, Michael; Bryant, Kevin F; Jousse, Céline; Long, Kai; Harding, Heather P; Scheuner, Donalyn; Kaufman, Randal J; Ma, Dawei; Coen, Donald M; Ron, David; Yuan, JunyingMost protein phosphatases have little intrinsic substrate specificity, making selective pharmacological inhibition of specific dephosphorylation reactions a challenging problem. In a screen for small molecules that protect cells from endoplasmic reticulum (ER) stress, we identified salubrinal, a selective inhibitor of cellular complexes that dephosphorylate eukaryotic translation initiation factor 2 subunit alpha (eIF2alpha). Salubrinal also blocks eIF2alpha dephosphorylation mediated by a herpes simplex virus protein and inhibits viral replication. These results suggest that selective chemical inhibitors of eIF2alpha dephosphorylation may be useful in diseases involving ER stress or viral infection. More broadly, salubrinal demonstrates the feasibility of selective pharmacological targeting of cellular dephosphorylation events.Item Open Access Novel inhibitory action of tunicamycin homologues suggests a role for dynamic protein fatty acylation in growth cone-mediated neurite extension.(J Cell Biol, 1994-02) Patterson, SI; Skene, JHIn neuronal growth cones, the advancing tips of elongating axons and dendrites, specific protein substrates appear to undergo cycles of posttranslational modification by covalent attachment and removal of long-chain fatty acids. We show here that ongoing fatty acylation can be inhibited selectively by long-chain homologues of the antibiotic tunicamycin, a known inhibitor of N-linked glycosylation. Tunicamycin directly inhibits transfer of palmitate to protein in a cell-free system, indicating that tunicamycin inhibition of protein palmitoylation reflects an action of the drug separate from its previously established effects on glycosylation. Tunicamycin treatment of differentiated PC12 cells or dissociated rat sensory neurons, under conditions in which protein palmitoylation is inhibited, produces a prompt cessation of neurite elongation and induces a collapse of neuronal growth cones. These growth cone responses are rapidly reversed by washout of the antibiotic, even in the absence of protein synthesis, or by addition of serum. Two additional lines of evidence suggest that the effects of tunicamycin on growth cones arise from its ability to inhibit protein long-chain acylation, rather than its previously established effects on protein glycosylation and synthesis. (a) The abilities of different tunicamycin homologues to induce growth cone collapse very systematically with the length of the fatty acyl side-chain of tunicamycin, in a manner predicted and observed for the inhibition of protein palmitoylation. Homologues with fatty acyl moieties shorter than palmitic acid (16 hydrocarbons), including potent inhibitors of glycosylation, are poor inhibitors of growth cone function. (b) The tunicamycin-induced impairment of growth cone function can be reversed by the addition of excess exogenous fatty acid, which reverses the inhibition of protein palmitoylation but has no effect on the inhibition of protein glycosylation. These results suggest an important role for dynamic protein acylation in growth cone-mediated extension of neuronal processes.Item Open Access Structure-activity relationship studies of salubrinal lead to its active biotinylated derivative.(Bioorganic & medicinal chemistry letters, 2005-09) Long, Kai; Boyce, Michael; Lin, He; Yuan, Junying; Ma, DaweiThe synthesis and structure-activity relationships (SAR) of salubrinal, a small molecule that protects cells from apoptosis induced by endoplasmic reticulum (ER) stress, are described. It is revealed that the trichloromethyl group greatly contributes to the activity. Based on the SAR results, salubrinal was converted into a biotinylated derivative which retains activity and can be used as a biological tool for target identification.