Browsing by Subject "PLANT"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Structure and function of spores in the aquatic heterosporous fern family Marsileaceae(International Journal of Plant Sciences, 2002-01-01) Schneider, H; Pryer, KMSpores of the aquatic heterosporous fern family Marsileaceae differ markedly from spores of Salviniaceae, the only other family of heterosporous ferns and sister group to Marsileaceae, and from spores of all homosporous ferns. The marsileaceous outer spore wall (perine) is modified above the aperture into a structure, the acrolamella, and the perine and acrolamella are further modified into a remarkable gelatinous layer that envelops the spore. Observations with light and scanning electron microscopy indicate that the three living marsileaceous fern genera (Marsilea, Pilularia, and Regnellidium) each have distinctive spores, particularly with regard to the perine and acrolamella. Several spore characters support a division of Marsilea into two groups. Spore character evolution is discussed in the context of developmental and possible functional aspects. The gelatinous perine layer acts as a flexible, floating organ that envelops the spores only for a short time and appears to be an adaptation of marsileaceous ferns to amphibious habitats. The gelatinous nature of the perine layer is likely the result of acidic polysaccharide components in the spore wall that have hydrogel (swelling and shrinking) properties. Megaspores floating at the water/air interface form a concave meniscus, at the center of which is the gelatinous acrolamella that encloses a "sperm lake". This meniscus creates a vortex-like effect that serves as a trap for free-swimming sperm cells, propelling them into the sperm lake.Item Open Access The Anthropocene: A conspicuous stratigraphical signal of anthropogenic changes in production and consumption across the biosphere(Earth's Future, 2016-03-01) Williams, M; Zalasiewicz, J; Waters, CN; Edgeworth, M; Bennett, C; Barnosky, AD; Ellis, EC; Ellis, MA; Cearreta, A; Haff, PK; Ivar Do Sul, JA; Leinfelder, R; McNeill, JR; Odada, E; Oreskes, N; Revkin, A; Richter, DDB; Steffen, W; Summerhayes, C; Syvitski, JP; Vidas, D; Wagreich, M; Wing, SL; Wolfe, AP; Zhisheng, A© 2016 The Authors. Biospheric relationships between production and consumption of biomass have been resilient to changes in the Earth system over billions of years. This relationship has increased in its complexity, from localized ecosystems predicated on anaerobic microbial production and consumption to a global biosphere founded on primary production from oxygenic photoautotrophs, through the evolution of Eukarya, metazoans, and the complexly networked ecosystems of microbes, animals, fungi, and plants that characterize the Phanerozoic Eon (the last 541 million years of Earth history). At present, one species, Homo sapiens, is refashioning this relationship between consumption and production in the biosphere with unknown consequences. This has left a distinctive stratigraphy of the production and consumption of biomass, of natural resources, and of produced goods. This can be traced through stone tool technologies and geochemical signals, later unfolding into a diachronous signal of technofossils and human bioturbation across the planet, leading to stratigraphically almost isochronous signals developing by the mid-20th century. These latter signals may provide an invaluable resource for informing and constraining a formal Anthropocene chronostratigraphy, but are perhaps yet more important as tracers of a biosphere state that is characterized by a geologically unprecedented pattern of global energy flow that is now pervasively influenced and mediated by humans, and which is necessary for maintaining the complexity of modern human societies.