Browsing by Subject "POPULATIONS"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Earthworms modify plant biomass and nitrogen capture under conditions of soil nutrient heterogeneity and elevated atmospheric CO2 concentrations(Soil Biology and Biochemistry, 2014-01-01) García-Palacios, Pablo; Maestre, Fernando T; Bradford, Mark A; Reynolds, James FEarthworms modify the way roots respond to soil nutrient patchiness. However, few studies have evaluated the joint effects of earthworms and soil heterogeneity on plant community biomass and species dominance, and none of them have assessed the influence of different patch features and environmental conditions on such effects. We evaluated how soil nutrient heterogeneity, earthworms (Eisenia fetida), organic material quality (15N-labelled leaves and roots of contrasting C: N ratios) and elevated atmospheric CO2 concentrations (phytotron chambers) affected the resource-use strategy, biomass and species dominance of mixtures formed by Lolium perenne L. and Plantago lanceolata L. Soil heterogeneity decreased N capture from the organic material, especially in the presence of earthworms. Mixtures experienced a 26 and 36% decrease in shoot and root biomass when earthworms were added to the heterogeneous microcosms, but only with high quality organic material. The dominance of L. perenne was lower under conditions of elevated CO2, nutrient heterogeneity and earthworms. Our data suggest that earthworms can neutralize positive plant growth responses to soil heterogeneity by exacerbating decreases in the supply of N to the plant. Specifically, earthworms foraging for high quality patches may stimulate microbial N immobilization, translating into lower N capture by plants. Increases in casting activity under elevated CO2, and hence in microbial N immobilization, may also explain why earthworms modulated the effects of soil heterogeneity and CO2 concentrations on plant community structure. We show that earthworms, absent from most soil nutrient heterogeneity studies, mediate plant biomass responses to nutrient patchiness by affecting N capture. Future plant-foraging behaviour studies should consider the roles played by soil engineers such as earthworms, so that results can be better extrapolated to natural communities. © 2014 Elsevier Ltd.Item Open Access Zostera marina meadows from the Gulf of California: conservation status(Biodiversity and Conservation, 2016-02-01) Lopez-Calderon, Jorge M; Riosmena-Rodríguez, Rafael; Torre, Jorge; Meling, Alf; Basurto, Xavier© 2016, Springer Science+Business Media Dordrecht. Eelgrass (Zostera marina) population estimates show a decreasing trend worldwide in the second half of the twentieth century. Mexico lacks long-term time series to determine trends for major eelgrass populations and has made no conservation efforts. Therefore, we present the first report on the historic presence of this annual coastal ecosystem in two wetlands of the Gulf of California (GC), the Infiernillo Channel (CIF, largest Z. marina population inside GC) and Concepcion Bay (BCP, the only eelgrass population along GC’s west coast), combining field surveys (1999–2010), aerial photography (2000–2010), satellite imagery (1972–2005), and published reports (1994–2007). Three parameters were used as indicators of conservation status: shoot density, seed banks, and aerial coverage. Average shoot density in the CIF (741 shoots m−2) was 3.8 times higher than in BCP (194 shoots m−2), and average seed bank density was similar in both wetlands (17,442 seeds m−2 vs. 17,000 seeds m−2). Opportunistic seagrass Ruppia maritima was observed in both wetlands, with higher abundance in summer when Z. marina disappears due to high water temperatures. Eelgrass coverage was three orders of magnitude greater in the CIF (9725 ha) than in BCP (3 ha). The striking difference between these wetlands is the lack of environmental protection for BCP and the protection of the CIF by the Seri indigenous community, which increases human pressure in the former, putting it at high risk of disappearing. Conservation of eelgrass meadows is not only necessary to preserve their ecosystem services but to insure the survival of migratory populations (Pacific brant goose, Branta bernicla), endangered species (Black turtle, Chelonia mydas), and fisheries-related species.