Browsing by Subject "PTEN Phosphohydrolase"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
Item Open Access An aberrant SREBP-dependent lipogenic program promotes metastatic prostate cancer.(Nature genetics, 2018-02) Chen, Ming; Zhang, Jiangwen; Sampieri, Katia; Clohessy, John G; Mendez, Lourdes; Gonzalez-Billalabeitia, Enrique; Liu, Xue-Song; Lee, Yu-Ru; Fung, Jacqueline; Katon, Jesse M; Menon, Archita Venugopal; Webster, Kaitlyn A; Ng, Christopher; Palumbieri, Maria Dilia; Diolombi, Moussa S; Breitkopf, Susanne B; Teruya-Feldstein, Julie; Signoretti, Sabina; Bronson, Roderick T; Asara, John M; Castillo-Martin, Mireia; Cordon-Cardo, Carlos; Pandolfi, Pier PaoloLipids, either endogenously synthesized or exogenous, have been linked to human cancer. Here we found that PML is frequently co-deleted with PTEN in metastatic human prostate cancer (CaP). We demonstrated that conditional inactivation of Pml in the mouse prostate morphs indolent Pten-null tumors into lethal metastatic disease. We identified MAPK reactivation, subsequent hyperactivation of an aberrant SREBP prometastatic lipogenic program, and a distinctive lipidomic profile as key characteristic features of metastatic Pml and Pten double-null CaP. Furthermore, targeting SREBP in vivo by fatostatin blocked both tumor growth and distant metastasis. Importantly, a high-fat diet (HFD) induced lipid accumulation in prostate tumors and was sufficient to drive metastasis in a nonmetastatic Pten-null mouse model of CaP, and an SREBP signature was highly enriched in metastatic human CaP. Thus, our findings uncover a prometastatic lipogenic program and lend direct genetic and experimental support to the notion that a Western HFD can promote metastasis.Item Open Access Detecting Germline PTEN Mutations Among At-Risk Patients With Cancer: An Age- and Sex-Specific Cost-Effectiveness Analysis.(Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 2015-08) Ngeow, Joanne; Liu, Chang; Zhou, Ke; Frick, Kevin D; Matchar, David B; Eng, CharisPurpose
Cowden syndrome (CS) is an autosomal dominant disorder characterized by benign and malignant tumors. One-quarter of patients who are diagnosed with CS have pathogenic germline PTEN mutations, which increase the risk of the development of breast, thyroid, uterine, renal, and other cancers. PTEN testing and regular, intensive cancer surveillance allow for early detection and treatment of these cancers for mutation-positive patients and their relatives. Individual CS-related features, however, occur commonly in the general population, making it challenging for clinicians to identify CS-like patients to offer PTEN testing.Patients and methods
We calculated the cost per mutation detected and analyzed the cost-effectiveness of performing selected PTEN testing among CS-like patients using a semi-quantitative score (the PTEN Cleveland Clinic [CC] score) compared with existing diagnostic criteria. In our model, first-degree relatives of the patients with detected PTEN mutations are offered PTEN testing. All individuals with detected PTEN mutations are offered cancer surveillance.Results
CC score at a threshold of 15 (CC15) costs from $3,720 to $4,573 to detect one PTEN mutation, which is the most inexpensive among the different strategies. At base-case, CC10 is the most cost-effective strategy for female patients who are younger than 40 years, and CC15 is the most cost-effective strategy for female patients who are between 40 and 60 years of age and male patients of all ages. In sensitivity analyses, CC15 is robustly the most cost-effective strategy for probands who are younger than 60 years.Conclusion
Use of the CC score as a clinical risk calculator is a cost-effective prescreening method to identify CS-like patients for PTEN germline testing.Item Open Access In Vivo Role of INPP4B in Tumor and Metastasis Suppression through Regulation of PI3K-AKT Signaling at Endosomes.(Cancer discovery, 2015-07) Li Chew, Chen; Lunardi, Andrea; Gulluni, Federico; Ruan, Daniel T; Chen, Ming; Salmena, Leonardo; Nishino, Michiya; Papa, Antonella; Ng, Christopher; Fung, Jacqueline; Clohessy, John G; Sasaki, Junko; Sasaki, Takehiko; Bronson, Roderick T; Hirsch, Emilio; Pandolfi, Pier PaoloThe phosphatases PTEN and INPP4B have been proposed to act as tumor suppressors by antagonizing PI3K-AKT signaling and are frequently dysregulated in human cancer. Although PTEN has been extensively studied, little is known about the underlying mechanisms by which INPP4B exerts its tumor-suppressive function and its role in tumorigenesis in vivo. Here, we show that a partial or complete loss of Inpp4b morphs benign thyroid adenoma lesions in Pten heterozygous mice into lethal and metastatic follicular-like thyroid cancer (FTC). Importantly, analyses of human thyroid cancer cell lines and specimens reveal INPP4B downregulation in FTC. Mechanistically, we find that INPP4B, but not PTEN, is enriched in the early endosomes of thyroid cancer cells, where it selectively inhibits AKT2 activation and in turn tumor proliferation and anchorage-independent growth. We therefore identify INPP4B as a novel tumor suppressor in FTC oncogenesis and metastasis through localized regulation of the PI3K-AKT pathway at the endosomes.Although both PTEN and INPP4B can inhibit PI3K-AKT signaling through their lipid phosphatase activities, here we demonstrate lack of an epistatic relationship between the two tumor suppressors. Instead, the qualitative regulation of PI3K-AKT2 signaling by INPP4B provides a mechanism for their cooperation in suppressing thyroid tumorigenesis and metastasis.Item Open Access Inhibition of Pten deficient Castration Resistant Prostate Cancer by Targeting of the SET - PP2A Signaling axis.(Sci Rep, 2015-11-13) Hu, Xiaoyong; Garcia, Consuelo; Fazli, Ladan; Gleave, Martin; Vitek, Michael P; Jansen, Marilyn; Christensen, Dale; Mulholland, David JThe PP2A signaling axis regulates multiple oncogenic drivers of castration resistant prostate cancer (CRPC). We show that targeting the endogenous PP2A regulator, SET (I2PP2A), is a viable strategy to inhibit prostate cancers that are resistant to androgen deprivation therapy. Our data is corroborated by analysis of prostate cancer patient cohorts showing significant elevation of SET transcripts. Tissue microarray analysis reveals that elevated SET expression correlates with clinical cancer grading, duration of neoadjuvant hormone therapy (NHT) and time to biochemical recurrence. Using prostate regeneration assays, we show that in vivo SET overexpression is sufficient to induce hyperplasia and prostatic intraepithelial neoplasia. Knockdown of SET induced significant reductions in tumorgenesis both in murine and human xenograft models. To further validate SET as a therapeutic target, we conducted in vitro and in vivo treatments using OP449 - a recently characterized PP2A-activating drug (PAD). OP449 elicits robust anti-cancer effects inhibiting growth in a panel of enzalutamide resistant prostate cancer cell lines. Using the Pten conditional deletion mouse model of prostate cancer, OP449 potently inhibited PI3K-Akt signaling and impeded CRPC progression. Collectively, our data supports a critical role for the SET-PP2A signaling axis in CRPC progression and hormone resistant disease.Item Open Access Phosphatase and tensin homologue/protein kinase B pathway linked to motor neuron survival in human superoxide dismutase 1-related amyotrophic lateral sclerosis.(Brain : a journal of neurology, 2011-02) Kirby, Janine; Ning, Ke; Ferraiuolo, Laura; Heath, Paul R; Ismail, Azza; Kuo, Su-Wei; Valori, Chiara F; Cox, Laura; Sharrack, Basil; Wharton, Stephen B; Ince, Paul G; Shaw, Pamela J; Azzouz, MimounGene expression profiling has been used previously with spinal cord homogenates and laser capture microdissected motor neurons to determine the mechanisms involved in neurodegeneration in amyotrophic lateral sclerosis. However, while cellular and animal model work has focused on superoxide dismutase 1-related amyotrophic lateral sclerosis, the transcriptional profile of human mutant superoxide dismutase 1 motor neurons has remained undiscovered. The aim of this study was to apply gene expression profiling to laser captured motor neurons from human superoxide dismutase 1-related amyotrophic lateral sclerosis and neurologically normal control cases, in order to determine those pathways dysregulated in human superoxide dismutase 1-related neurodegeneration and to establish potential pathways suitable for therapeutic intervention. Identified targets were then validated in cultured cell models using lentiviral vectors to manipulate the expression of key genes. Microarray analysis identified 1170 differentially expressed genes in spinal cord motor neurons from superoxide dismutase 1-related amyotrophic lateral sclerosis, compared with controls. These genes encoded for proteins in multiple functional categories, including those involved in cell survival and cell death. Further analysis determined that multiple genes involved in the phosphatidylinositol-3 kinase signalling cascade were differentially expressed in motor neurons that survived the disease process. Functional experiments in cultured cells and primary motor neurons demonstrate that manipulating this pathway by reducing the expression of a single upstream target, the negative phosphatidylinositol-3 kinase regulator phosphatase and tensin homology, promotes a marked pro-survival effect. Therefore, these data indicate that proteins in the phosphatidylinositol-3 kinase pathway could represent a target for therapeutic manipulation in motor neuron degeneration.Item Open Access Pills of PTEN? In and out for tumor suppression.(Cell research, 2013-10) Papa, Antonella; Chen, Ming; Pandolfi, Pier PaoloThe tumor-suppressive activity of PTEN has always been attributed to its endogenous intracellular function. Recently two different groups have demonstrated that PTEN is secreted/exported into the extracellular environment for uptake by recipient cells, and functions as a tumor suppressor in a cell non-autonomous manner.Item Open Access Reactivation of PTEN tumor suppressor for cancer treatment through inhibition of a MYC-WWP1 inhibitory pathway.(Science (New York, N.Y.), 2019-05) Lee, Yu-Ru; Chen, Ming; Lee, Jonathan D; Zhang, Jinfang; Lin, Shu-Yu; Fu, Tian-Min; Chen, Hao; Ishikawa, Tomoki; Chiang, Shang-Yin; Katon, Jesse; Zhang, Yang; Shulga, Yulia V; Bester, Assaf C; Fung, Jacqueline; Monteleone, Emanuele; Wan, Lixin; Shen, Chen; Hsu, Chih-Hung; Papa, Antonella; Clohessy, John G; Teruya-Feldstein, Julie; Jain, Suresh; Wu, Hao; Matesic, Lydia; Chen, Ruey-Hwa; Wei, Wenyi; Pandolfi, Pier PaoloActivation of tumor suppressors for the treatment of human cancer has been a long sought, yet elusive, strategy. PTEN is a critical tumor suppressive phosphatase that is active in its dimer configuration at the plasma membrane. Polyubiquitination by the ubiquitin E3 ligase WWP1 (WW domain-containing ubiquitin E3 ligase 1) suppressed the dimerization, membrane recruitment, and function of PTEN. Either genetic ablation or pharmacological inhibition of WWP1 triggered PTEN reactivation and unleashed tumor suppressive activity. WWP1 appears to be a direct MYC (MYC proto-oncogene) target gene and was critical for MYC-driven tumorigenesis. We identified indole-3-carbinol, a compound found in cruciferous vegetables, as a natural and potent WWP1 inhibitor. Thus, our findings unravel a potential therapeutic strategy for cancer prevention and treatment through PTEN reactivation.Item Open Access Suppression of CHK1 by ETS Family Members Promotes DNA Damage Response Bypass and Tumorigenesis.(Cancer discovery, 2015-05) Lunardi, Andrea; Varmeh, Shohreh; Chen, Ming; Taulli, Riccardo; Guarnerio, Jlenia; Ala, Ugo; Seitzer, Nina; Ishikawa, Tomoki; Carver, Brett S; Hobbs, Robin M; Quarantotti, Valentina; Ng, Christopher; Berger, Alice H; Nardella, Caterina; Poliseno, Laura; Montironi, Rodolfo; Castillo-Martin, Mireia; Cordon-Cardo, Carlos; Signoretti, Sabina; Pandolfi, Pier PaoloUNLABELLED:The ETS family of transcription factors has been repeatedly implicated in tumorigenesis. In prostate cancer, ETS family members, such as ERG, ETV1, ETV4, and ETV5, are frequently overexpressed due to chromosomal translocations, but the molecular mechanisms by which they promote prostate tumorigenesis remain largely undefined. Here, we show that ETS family members, such as ERG and ETV1, directly repress the expression of the checkpoint kinase 1 (CHK1), a key DNA damage response cell-cycle regulator essential for the maintenance of genome integrity. Critically, we find that ERG expression correlates with CHK1 downregulation in human patients and demonstrate that Chk1 heterozygosity promotes the progression of high-grade prostatic intraepithelial neoplasia into prostatic invasive carcinoma in Pten(+) (/-) mice. Importantly, CHK1 downregulation sensitizes prostate tumor cells to etoposide but not to docetaxel treatment. Thus, we identify CHK1 as a key functional target of the ETS proto-oncogenic family with important therapeutic implications. SIGNIFICANCE:Genetic translocation and aberrant expression of ETS family members is a common event in different types of human tumors. Here, we show that through the transcriptional repression of CHK1, ETS factors may favor DNA damage accumulation and consequent genetic instability in proliferating cells. Importantly, our findings provide a rationale for testing DNA replication inhibitor agents in ETS-positive TP53-proficient tumors.Item Open Access Vulnerabilities of PTEN-TP53-deficient prostate cancers to compound PARP-PI3K inhibition.(Cancer discovery, 2014-08) González-Billalabeitia, Enrique; Seitzer, Nina; Song, Su Jung; Song, Min Sup; Patnaik, Akash; Liu, Xue-Song; Epping, Mirjam T; Papa, Antonella; Hobbs, Robin M; Chen, Ming; Lunardi, Andrea; Ng, Christopher; Webster, Kaitlyn A; Signoretti, Sabina; Loda, Massimo; Asara, John M; Nardella, Caterina; Clohessy, John G; Cantley, Lewis C; Pandolfi, Pier PaoloProstate cancer is the most prevalent cancer in males, and treatment options are limited for advanced forms of the disease. Loss of the PTEN and TP53 tumor suppressor genes is commonly observed in prostate cancer, whereas their compound loss is often observed in advanced prostate cancer. Here, we show that PARP inhibition triggers a p53-dependent cellular senescence in a PTEN-deficient setting in the prostate. Surprisingly, we also find that PARP-induced cellular senescence is morphed into an apoptotic response upon compound loss of PTEN and p53. We further show that superactivation of the prosurvival PI3K-AKT signaling pathway limits the efficacy of a PARP single-agent treatment, and that PARP and PI3K inhibitors effectively synergize to suppress tumorigenesis in human prostate cancer cell lines and in a Pten/Trp53-deficient mouse model of advanced prostate cancer. Our findings, therefore, identify a combinatorial treatment with PARP and PI3K inhibitors as an effective option for PTEN-deficient prostate cancer.The paucity of therapeutic options in advanced prostate cancer displays an urgent need for the preclinical assessment of novel therapeutic strategies. We identified differential therapeutic vulnerabilities that emerge upon the loss of both PTEN and p53, and observed that combined inhibition of PARP and PI3K provides increased efficacy in hormone-insensitive advanced prostate cancer.