Browsing by Subject "Parietal Lobe"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
Item Open Access Age mediation of frontoparietal activation during visual feature search.(Neuroimage, 2014-11-15) Madden, David J; Parks, Emily L; Davis, Simon W; Diaz, Michele T; Potter, Guy G; Chou, Ying-hui; Chen, Nan-kuei; Cabeza, RobertoActivation of frontal and parietal brain regions is associated with attentional control during visual search. We used fMRI to characterize age-related differences in frontoparietal activation in a highly efficient feature search task, detection of a shape singleton. On half of the trials, a salient distractor (a color singleton) was present in the display. The hypothesis was that frontoparietal activation mediated the relation between age and attentional capture by the salient distractor. Participants were healthy, community-dwelling individuals, 21 younger adults (19-29 years of age) and 21 older adults (60-87 years of age). Top-down attention, in the form of target predictability, was associated with an improvement in search performance that was comparable for younger and older adults. The increase in search reaction time (RT) associated with the salient distractor (attentional capture), standardized to correct for generalized age-related slowing, was greater for older adults than for younger adults. On trials with a color singleton distractor, search RT increased as a function of increasing activation in frontal regions, for both age groups combined, suggesting increased task difficulty. Mediational analyses disconfirmed the hypothesized model, in which frontal activation mediated the age-related increase in attentional capture, but supported an alternative model in which age was a mediator of the relation between frontal activation and capture.Item Open Access Age-related differences in frontoparietal activation for target and distractor singletons during visual search.(Attention, perception & psychophysics, 2023-04) Merenstein, Jenna L; Mullin, Hollie A; Madden, David JAge-related decline in visual search performance has been associated with different patterns of activation in frontoparietal regions using functional magnetic resonance imaging (fMRI), but whether these age-related effects represent specific influences of target and distractor processing is unclear. Therefore, we acquired event-related fMRI data from 68 healthy, community-dwelling adults ages 18-78 years, during both conjunction (T/F target among rotated Ts and Fs) and feature (T/F target among Os) search. Some displays contained a color singleton that could correspond to either the target or a distractor. A diffusion decision analysis indicated age-related increases in sensorimotor response time across all task conditions, but an age-related decrease in the rate of evidence accumulation (drift rate) was specific to conjunction search. Moreover, the color singleton facilitated search performance when occurring as a target and disrupted performance when occurring as a distractor, but only during conjunction search, and these effects were independent of age. The fMRI data indicated that decreased search efficiency for conjunction relative to feature search was evident as widespread frontoparietal activation. Activation within the left insula mediated the age-related decrease in drift rate for conjunction search, whereas this relation in the FEF and parietal cortex was significant only for individuals younger than 30 or 44 years, respectively. Finally, distractor singletons were associated with significant parietal activation, whereas target singletons were associated with significant frontoparietal deactivation, and this latter effect increased with adult age. Age-related differences in frontoparietal activation therefore reflect both the overall efficiency of search and the enhancement from salient targets.Item Open Access Brain connectivity and visual attention.(Brain connectivity, 2013-01) Parks, Emily L; Madden, David JEmerging hypotheses suggest that efficient cognitive functioning requires the integration of separate, but interconnected cortical networks in the brain. Although task-related measures of brain activity suggest that a frontoparietal network is associated with the control of attention, little is known regarding how components within this distributed network act together or with other networks to achieve various attentional functions. This review considers both functional and structural studies of brain connectivity, as complemented by behavioral and task-related neuroimaging data. These studies show converging results: The frontal and parietal cortical regions are active together, over time, and identifiable frontoparietal networks are active in relation to specific task demands. However, the spontaneous, low-frequency fluctuations of brain activity that occur in the resting state, without specific task demands, also exhibit patterns of connectivity that closely resemble the task-related, frontoparietal attention networks. Both task-related and resting-state networks exhibit consistent relations to behavioral measures of attention. Further, anatomical structure, particularly white matter pathways as defined by diffusion tensor imaging, places constraints on intrinsic functional connectivity. Lastly, connectivity analyses applied to investigate cognitive differences across individuals in both healthy and diseased states suggest that disconnection of attentional networks is linked to deficits in cognitive functioning, and in extreme cases, to disorders of attention. Thus, comprehensive theories of visual attention and their clinical translation depend on the continued integration of behavioral, task-related neuroimaging, and brain connectivity measures.Item Open Access Characteristics of sequential activity in networks with temporally asymmetric Hebbian learning.(Proceedings of the National Academy of Sciences of the United States of America, 2020-11-11) Gillett, Maxwell; Pereira, Ulises; Brunel, NicolasSequential activity has been observed in multiple neuronal circuits across species, neural structures, and behaviors. It has been hypothesized that sequences could arise from learning processes. However, it is still unclear whether biologically plausible synaptic plasticity rules can organize neuronal activity to form sequences whose statistics match experimental observations. Here, we investigate temporally asymmetric Hebbian rules in sparsely connected recurrent rate networks and develop a theory of the transient sequential activity observed after learning. These rules transform a sequence of random input patterns into synaptic weight updates. After learning, recalled sequential activity is reflected in the transient correlation of network activity with each of the stored input patterns. Using mean-field theory, we derive a low-dimensional description of the network dynamics and compute the storage capacity of these networks. Multiple temporal characteristics of the recalled sequential activity are consistent with experimental observations. We find that the degree of sparseness of the recalled sequences can be controlled by nonlinearities in the learning rule. Furthermore, sequences maintain robust decoding, but display highly labile dynamics, when synaptic connectivity is continuously modified due to noise or storage of other patterns, similar to recent observations in hippocampus and parietal cortex. Finally, we demonstrate that our results also hold in recurrent networks of spiking neurons with separate excitatory and inhibitory populations.Item Open Access Complementary topology of maintenance and manipulation brain networks in working memory.(Scientific reports, 2018-12-13) Davis, SW; Crowell, CA; Beynel, L; Deng, L; Lakhlani, D; Hilbig, SA; Lim, W; Nguyen, D; Peterchev, AV; Luber, BM; Lisanby, SH; Appelbaum, LG; Cabeza, RWorking memory (WM) is assumed to consist of a process that sustains memory representations in an active state (maintenance) and a process that operates on these activated representations (manipulation). We examined evidence for two distinct, concurrent cognitive functions supporting maintenance and manipulation abilities by testing brain activity as participants performed a WM alphabetization task. Maintenance was investigated by varying the number of letters held in WM and manipulation by varying the number of moves required to sort the list alphabetically. We found that both maintenance and manipulation demand had significant effects on behavior that were associated with different cortical regions: maintenance was associated with bilateral prefrontal and left parietal cortex, and manipulation with right parietal activity, a link that is consistent with the role of parietal cortex in symbolic computations. Both structural and functional architecture of these systems suggested that these cognitive functions are supported by two dissociable brain networks. Critically, maintenance and manipulation functional networks became increasingly segregated with increasing demand, an effect that was positively associated with individual WM ability. These results provide evidence that network segregation may act as a protective mechanism to enable successful performance under increasing WM demand.Item Open Access Emotion-attention network interactions during a visual oddball task.(Brain Res Cogn Brain Res, 2004-06) Fichtenholtz, Harlan M; Dean, Heather L; Dillon, Daniel G; Yamasaki, Hiroshi; McCarthy, Gregory; LaBar, Kevin SEmotional and attentional functions are known to be distributed along ventral and dorsal networks in the brain, respectively. However, the interactions between these systems remain to be specified. The present study used event-related functional magnetic resonance imaging (fMRI) to investigate how attentional focus can modulate the neural activity elicited by scenes that vary in emotional content. In a visual oddball task, aversive and neutral scenes were presented intermittently among circles and squares. The squares were frequent standard events, whereas the other novel stimulus categories occurred rarely. One experimental group [N=10] was instructed to count the circles, whereas another group [N=12] counted the emotional scenes. A main effect of emotion was found in the amygdala (AMG) and ventral frontotemporal cortices. In these regions, activation was significantly greater for emotional than neutral stimuli but was invariant to attentional focus. A main effect of attentional focus was found in dorsal frontoparietal cortices, whose activity signaled task-relevant target events irrespective of emotional content. The only brain region that was sensitive to both emotion and attentional focus was the anterior cingulate gyrus (ACG). When circles were task-relevant, the ACG responded equally to circle targets and distracting emotional scenes. The ACG response to emotional scenes increased when they were task-relevant, and the response to circles concomitantly decreased. These findings support and extend prominent network theories of emotion-attention interactions that highlight the integrative role played by the anterior cingulate.Item Open Access Functional parcellation of attentional control regions of the brain.(J Cogn Neurosci, 2004-01) Woldorff, Marty G; Hazlett, Chad J; Fichtenholtz, Harlan M; Weissman, Daniel H; Dale, Anders M; Song, Allen WRecently, a number of investigators have examined the neural loci of psychological processes enabling the control of visual spatial attention using cued-attention paradigms in combination with event-related functional magnetic resonance imaging. Findings from these studies have provided strong evidence for the involvement of a fronto-parietal network in attentional control. In the present study, we build upon this previous work to further investigate these attentional control systems. In particular, we employed additional controls for nonattentional sensory and interpretative aspects of cue processing to determine whether distinct regions in the fronto-parietal network are involved in different aspects of cue processing, such as cue-symbol interpretation and attentional orienting. In addition, we used shorter cue-target intervals that were closer to those used in the behavioral and event-related potential cueing literatures. Twenty participants performed a cued spatial attention task while brain activity was recorded with functional magnetic resonance imaging. We found functional specialization for different aspects of cue processing in the lateral and medial subregions of the frontal and parietal cortex. In particular, the medial subregions were more specific to the orienting of visual spatial attention, while the lateral subregions were associated with more general aspects of cue processing, such as cue-symbol interpretation. Additional cue-related effects included differential activations in midline frontal regions and pretarget enhancements in the thalamus and early visual cortical areas.Item Open Access Response-level processing during visual feature search: Effects of frontoparietal activation and adult age.(Attention, perception & psychophysics, 2020-01) Madden, David J; Siciliano, Rachel E; Tallman, Catherine W; Monge, Zachary A; Voss, Andreas; Cohen, Jessica RPrevious research suggests that feature search performance is relatively resistant to age-related decline. However, little is known regarding the neural mechanisms underlying the age-related constancy of feature search. In this experiment, we used a diffusion decision model of reaction time (RT), and event-related functional magnetic resonance imaging (fMRI) to investigate age-related differences in response-level processing during visual feature search. Participants were 80 healthy, right-handed, community-dwelling individuals, 19-79 years of age. Analyses of search performance indicated that targets accompanied by response-incompatible distractors were associated with a significant increase in the nondecision-time (t0) model parameter, possibly reflecting the additional time required for response execution. Nondecision time increased significantly with increasing age, but no age-related effects were evident in drift rate, cautiousness (boundary separation, a), or in the specific effects of response compatibility. Nondecision time was also associated with a pattern of activation and deactivation in frontoparietal regions. The relation of age to nondecision time was indirect, mediated by this pattern of frontoparietal activation and deactivation. Response-compatible and -incompatible trials were associated with specific patterns of activation in the medial and superior parietal cortex, and frontal eye field, but these activation effects did not mediate the relation between age and search performance. These findings suggest that, in the context of a highly efficient feature search task, the age-related influence of frontoparietal activation is operative at a relatively general level, which is common to the task conditions, rather than at the response level specifically.Item Open Access Visual perception and corollary discharge.(Perception, 2008) Sommer, Marc A; Wurtz, Robert HPerception depends not only on sensory input but also on the state of the brain receiving that input. A classic example is perception of a stable visual world in spite of the saccadic eye movements that shift the images on the retina. A long-standing hypothesis is that the brain compensates for the disruption of visual input by using advance knowledge of the impending saccade, an internally generated corollary discharge. One possible neuronal mechanism for this compensation has been previously identified in parietal and frontal cortex of monkeys, but the origin of the necessary corollary discharge remained unknown. Here, we consider recent experiments that identified a pathway for a corollary discharge for saccades that extends from the superior colliculus in the midbrain to the frontal eye fields in the cerebral cortex with a relay in the medial dorsal nucleus of the thalamus. We first review the nature of the evidence used to identify a corollary discharge signal in the complexity of the primate brain and show its use for guiding a rapid sequence of eye movements. We then consider two experiments that show this same corollary signal may provide the input to the frontal cortex neurons that alters their activity with saccades in ways that could compensate for the displacements in the visual input produced by saccadic eye movements. The first experiment shows that the corollary discharge signal is spatially and temporally appropriate to produce the alterations in the frontal-cortex neurons. The second shows that this signal is necessary for this alteration because inactivation of the corollary reduces the compensation by frontal-cortex neurons. The identification of this relatively simple circuit specifies the organization of a corollary discharge in the primate brain for the first time and provides a specific example upon which consideration of the roles of corollary activity in other systems and for other functions can be evaluated.