Browsing by Subject "Perturbation analysis"
- Results Per Page
- Sort Options
Item Open Access Mathematical Modeling of Perifusion Cell Culture Experiments(2016) Temamogullari, NIhal EzgiIn perifusion cell cultures, the culture medium flows continuously through a chamber containing immobilized cells and the effluent is collected at the end. In our main applications, gonadotropin releasing hormone (GnRH) or oxytocin is introduced into the chamber as the input. They stimulate the cells to secrete luteinizing hormone (LH), which is collected in the effluent. To relate the effluent LH concentration to the cellular processes producing it, we develop and analyze a mathematical model consisting of coupled partial differential equations describing the intracellular signaling and the movement of substances in the cell chamber. We analyze three different data sets and give cellular mechanisms that explain the data. Our model indicates that two negative feedback loops, one fast and one slow, are needed to explain the data and we give their biological bases. We demonstrate that different LH outcomes in oxytocin and GnRH stimulations might originate from different receptor dynamics. We analyze the model to understand the influence of parameters, like the rate of the medium flow or the fraction collection time, on the experimental outcomes. We investigate how the rate of binding and dissociation of the input hormone to and from its receptor influence its movement down the chamber. Finally, we formulate and analyze simpler models that allow us to predict the distortion of a square pulse due to hormone-receptor interactions and to estimate parameters using perifusion data. We show that in the limit of high binding and dissociation the square pulse moves as a diffusing Gaussian and in this limit the biological parameters can be estimated.
Item Open Access Modeling and numerical simulation of the nonlinear dynamics of the forced planar string pendulum(2012-04-24) Ciocanel, VeronicaThe string pendulum consists of a mass attached to the end of an inextensible string which is fastened to a support. Analyzing the dynamics of such forced supports is motivated by understanding the behavior of suspension bridges or of tethered structures during earthquakes. Applying an external forcing to the pendulum's support can cause the pendulum string to go from taut to slack states and vice versa, and is capable of exhibiting interesting periodic or chaotic dynamics. The inextensibility of the string and its capacity to go slack make simulation and analysis of the system complicated. The string pendulum system is thus formulated here as a piecewise-smooth dynamical system using the method of Lagrange multipliers to obtain a system of differential algebraic equations (DAE) for the taut state. In order to find a formulation for the forced string pendulum system, we first turn to similar but simpler pendulum systems, such as the classic rigid pendulum, the elastic spring pendulum and the elastic spring pendulum with piecewise constant stiffness. We perform a perturbation analysis for both the unforced and forced cases of the spring pendulum approximation, which shows that, for large stiffness, this is a reasonable model of the system. We also show that the spring pendulum with piecewise constant stiffness can be a good approximation of the string pendulum, in the limit of a large extension constant and a low compression constant. We indicate the behavior and stability of this simplified model by using numerical computations of the system's Lyapunov exponents. We then provide a comparison of the spring pendulum with piecewise constant stiffness with the formulation of the taut-slack pendulum using the DAE for the taut states and derived switching conditions to the slack states.