Browsing by Subject "Phantoms, Imaging"
Now showing 1 - 20 of 32
Results Per Page
Sort Options
Item Open Access 3D refraction correction and extraction of clinical parameters from spectral domain optical coherence tomography of the cornea.(Opt Express, 2010-04-26) Zhao, Mingtao; Kuo, Anthony N; Izatt, Joseph ACapable of three-dimensional imaging of the cornea with micrometer-scale resolution, spectral domain-optical coherence tomography (SDOCT) offers potential advantages over Placido ring and Scheimpflug photography based systems for accurate extraction of quantitative keratometric parameters. In this work, an SDOCT scanning protocol and motion correction algorithm were implemented to minimize the effects of patient motion during data acquisition. Procedures are described for correction of image data artifacts resulting from 3D refraction of SDOCT light in the cornea and from non-idealities of the scanning system geometry performed as a pre-requisite for accurate parameter extraction. Zernike polynomial 3D reconstruction and a recursive half searching algorithm (RHSA) were implemented to extract clinical keratometric parameters including anterior and posterior radii of curvature, central cornea optical power, central corneal thickness, and thickness maps of the cornea. Accuracy and repeatability of the extracted parameters obtained using a commercial 859nm SDOCT retinal imaging system with a corneal adapter were assessed using a rigid gas permeable (RGP) contact lens as a phantom target. Extraction of these parameters was performed in vivo in 3 patients and compared to commercial Placido topography and Scheimpflug photography systems. The repeatability of SDOCT central corneal power measured in vivo was 0.18 Diopters, and the difference observed between the systems averaged 0.1 Diopters between SDOCT and Scheimpflug photography, and 0.6 Diopters between SDOCT and Placido topography.Item Open Access A low-cost, portable, and quantitative spectral imaging system for application to biological tissues.(Opt Express, 2010-06-07) Fu, Henry L; Yu, Bing; Lo, Justin Y; Palmer, Greg M; Kuech, Thomas F; Ramanujam, NimmiThe ability of diffuse reflectance spectroscopy to extract quantitative biological composition of tissues has been used to discern tissue types in both pre-clinical and clinical cancer studies. Typically, diffuse reflectance spectroscopy systems are designed for single-point measurements. Clinically, an imaging system would provide valuable spatial information on tissue composition. While it is feasible to build a multiplexed fiber-optic probe based spectral imaging system, these systems suffer from drawbacks with respect to cost and size. To address these we developed a compact and low cost system using a broadband light source with an 8-slot filter wheel for illumination and silicon photodiodes for detection. The spectral imaging system was tested on a set of tissue mimicking liquid phantoms which yielded an optical property extraction accuracy of 6.40 +/- 7.78% for the absorption coefficient (micro(a)) and 11.37 +/- 19.62% for the wavelength-averaged reduced scattering coefficient (micro(s)').Item Open Access A neural network-based method for spectral distortion correction in photon counting x-ray CT.(Physics in medicine and biology, 2016-08) Touch, Mengheng; Clark, Darin P; Barber, William; Badea, Cristian TSpectral CT using a photon counting x-ray detector (PCXD) shows great potential for measuring material composition based on energy dependent x-ray attenuation. Spectral CT is especially suited for imaging with K-edge contrast agents to address the otherwise limited contrast in soft tissues. We have developed a micro-CT system based on a PCXD. This system enables both 4 energy bins acquisition, as well as full-spectrum mode in which the energy thresholds of the PCXD are swept to sample the full energy spectrum for each detector element and projection angle. Measurements provided by the PCXD, however, are distorted due to undesirable physical effects in the detector and can be very noisy due to photon starvation in narrow energy bins. To address spectral distortions, we propose and demonstrate a novel artificial neural network (ANN)-based spectral distortion correction mechanism, which learns to undo the distortion in spectral CT, resulting in improved material decomposition accuracy. To address noise, post-reconstruction denoising based on bilateral filtration, which jointly enforces intensity gradient sparsity between spectral samples, is used to further improve the robustness of ANN training and material decomposition accuracy. Our ANN-based distortion correction method is calibrated using 3D-printed phantoms and a model of our spectral CT system. To enable realistic simulations and validation of our method, we first modeled the spectral distortions using experimental data acquired from (109)Cd and (133)Ba radioactive sources measured with our PCXD. Next, we trained an ANN to learn the relationship between the distorted spectral CT projections and the ideal, distortion-free projections in a calibration step. This required knowledge of the ground truth, distortion-free spectral CT projections, which were obtained by simulating a spectral CT scan of the digital version of a 3D-printed phantom. Once the training was completed, the trained ANN was used to perform distortion correction on any subsequent scans of the same system with the same parameters. We used joint bilateral filtration to perform noise reduction by jointly enforcing intensity gradient sparsity between the reconstructed images for each energy bin. Following reconstruction and denoising, the CT data was spectrally decomposed using the photoelectric effect, Compton scattering, and a K-edge material (i.e. iodine). The ANN-based distortion correction approach was tested using both simulations and experimental data acquired in phantoms and a mouse with our PCXD-based micro-CT system for 4 bins and full-spectrum acquisition modes. The iodine detectability and decomposition accuracy were assessed using the contrast-to-noise ratio and relative error in iodine concentration estimation metrics in images with and without distortion correction. In simulation, the material decomposition accuracy in the reconstructed data was vastly improved following distortion correction and denoising, with 50% and 20% reductions in material concentration measurement error in full-spectrum and 4 energy bins cases, respectively. Overall, experimental data confirms that full-spectrum mode provides superior results to 4-energy mode when the distortion corrections are applied. The material decomposition accuracy in the reconstructed data was vastly improved following distortion correction and denoising, with as much as a 41% reduction in material concentration measurement error for full-spectrum mode, while also bringing the iodine detectability to 4-6 mg ml(-1). Distortion correction also improved the 4 bins mode data, but to a lesser extent. The results demonstrate the experimental feasibility and potential advantages of ANN-based distortion correction and joint bilateral filtration-based denoising for accurate K-edge imaging with a PCXD. Given the computational efficiency with which the ANN can be applied to projection data, the proposed scheme can be readily integrated into existing CT reconstruction pipelines.Item Open Access A novel multi-modality imaging phantom for validating interstitial needle guidance for high dose rate gynecological brachytherapy.(Journal of applied clinical medical physics, 2023-10) Eckroate, Brett; Ayala-Peacock, Diandra; Venkataraman, Rajesh; Campelo, Sabrina; Chino, Junzo; Stephens, Sarah Jo; Kim, Yongbok; Meltsner, Sheridan; Raffi, Julie; Craciunescu, OanaPurpose
To design, manufacture, and validate a female pelvic phantom for multi-modality imaging (CT, MRI, US) to benchmark a commercial needle tracking system with application in HDR gynecological (GYN) interstitial procedures.Materials and methods
A GYN needle-tracking phantom was designed using CAD software to model an average uterus from a previous patient study, a vaginal canal from speculum dimensions, and a rectum to accommodate a transrectal ultrasound (TRUS) probe. A target volume (CTVHR ) was designed as an extension from the cervix-uterus complex. Negative space molds were created from modeled anatomy and 3D printed. Silicone was used to cast the anatomy molds. A 3D printed box was constructed to house the manufactured anatomy for structural integrity and to accommodate the insertion of a speculum, tandem, needles, and TRUS probe. The phantom was CT-imaged to identify potential imperfections that might impact US visualization. Free-hand TRUS was used to guide interstitial needles into the phantom. The commercial tracking system was used to generate a 3D US volume. After insertion, the phantom was imaged with CT and MR and the uterus and CTVHR dimensions were verified against the CAD model.Results/conclusions
The manufactured phantom allows for accurate visualization with multiple imaging modalities and is conducive to applicator and needle insertion. The phantom dimensions from the CAD model were verified with those from each imaging modality. The phantom is low cost and can be reproducibly manufactured with the 3D printing and molding processes. Our initial experiments demonstrate the ability to integrate the phantom with a commercial tracking system for future needle tracking validation studies.Item Open Access A positioning QA procedure for 2D/2D (kV/MV) and 3D/3D (CT/CBCT) image matching for radiotherapy patient setup.(Journal of applied clinical medical physics, 2009-10-06) Guan, Huaiqun; Hammoud, Rabih; Yin, Fang-FangA positioning QA procedure for Varian's 2D/2D (kV/MV) and 3D/3D (planCT/CBCT) matching was developed. The procedure was to check: (1) the coincidence of on-board imager (OBI), portal imager (PI), and cone beam CT (CBCT)'s isocenters (digital graticules) to a linac's isocenter (to a pre-specified accuracy); (2) that the positioning difference detected by 2D/2D (kV/MV) and 3D/3D(planCT/CBCT) matching can be reliably transferred to couch motion. A cube phantom with a 2 mm metal ball (bb) at the center was used. The bb was used to define the isocenter. Two additional bbs were placed on two phantom surfaces in order to define a spatial location of 1.5 cm anterior, 1.5 cm inferior, and 1.5 cm right from the isocenter. An axial scan of the phantom was acquired from a multislice CT simulator. The phantom was set at the linac's isocenter (lasers); either AP MV/R Lat kV images or CBCT images were taken for 2D/2D or 3D/3D matching, respectively. For 2D/2D, the accuracy of each device's isocenter was obtained by checking the distance between the central bb and the digital graticule. Then the central bb in orthogonal DRRs was manually moved to overlay to the off-axis bbs in kV/MV images. For 3D/3D, CBCT was first matched to planCT to check the isocenter difference between the two CTs. Manual shifts were then made by moving CBCT such that the point defined by the two off-axis bbs overlay to the central bb in planCT. (PlanCT can not be moved in the current version of OBI1.4.) The manual shifts were then applied to remotely move the couch. The room laser was used to check the accuracy of the couch movement. For Trilogy (or Ix-21) linacs, the coincidence of imager and linac's isocenter was better than 1 mm (or 1.5 mm). The couch shift accuracy was better than 2 mm.Item Open Access Acoustic radiation force impulse imaging (ARFI) on an IVUS circular array.(Ultrason Imaging, 2014-04) Patel, Vivek; Dahl, Jeremy J; Bradway, David P; Doherty, Joshua R; Lee, Seung Yun; Smith, Stephen WOur long-term goal is the detection and characterization of vulnerable plaque in the coronary arteries of the heart using intravascular ultrasound (IVUS) catheters. Vulnerable plaque, characterized by a thin fibrous cap and a soft, lipid-rich necrotic core is a precursor to heart attack and stroke. Early detection of such plaques may potentially alter the course of treatment of the patient to prevent ischemic events. We have previously described the characterization of carotid plaques using external linear arrays operating at 9 MHz. In addition, we previously modified circular array IVUS catheters by short-circuiting several neighboring elements to produce fixed beamwidths for intravascular hyperthermia applications. In this paper, we modified Volcano Visions 8.2 French, 9 MHz catheters and Volcano Platinum 3.5 French, 20 MHz catheters by short-circuiting portions of the array for acoustic radiation force impulse imaging (ARFI) applications. The catheters had an effective transmit aperture size of 2 mm and 1.5 mm, respectively. The catheters were connected to a Verasonics scanner and driven with pushing pulses of 180 V p-p to acquire ARFI data from a soft gel phantom with a Young's modulus of 2.9 kPa. The dynamic response of the tissue-mimicking material demonstrates a typical ARFI motion of 1 to 2 microns as the gel phantom displaces away and recovers back to its normal position. The hardware modifications applied to our IVUS catheters mimic potential beamforming modifications that could be implemented on IVUS scanners. Our results demonstrate that the generation of radiation force from IVUS catheters and the development of intravascular ARFI may be feasible.Item Open Access Advances in micro-CT imaging of small animals.(Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB), 2021-08) Clark, DP; Badea, CTPurpose
Micron-scale computed tomography (micro-CT) imaging is a ubiquitous, cost-effective, and non-invasive three-dimensional imaging modality. We review recent developments and applications of micro-CT for preclinical research.Methods
Based on a comprehensive review of recent micro-CT literature, we summarize features of state-of-the-art hardware and ongoing challenges and promising research directions in the field.Results
Representative features of commercially available micro-CT scanners and some new applications for both in vivo and ex vivo imaging are described. New advancements include spectral scanning using dual-energy micro-CT based on energy-integrating detectors or a new generation of photon-counting x-ray detectors (PCDs). Beyond two-material discrimination, PCDs enable quantitative differentiation of intrinsic tissues from one or more extrinsic contrast agents. When these extrinsic contrast agents are incorporated into a nanoparticle platform (e.g. liposomes), novel micro-CT imaging applications are possible such as combined therapy and diagnostic imaging in the field of cancer theranostics. Another major area of research in micro-CT is in x-ray phase contrast (XPC) imaging. XPC imaging opens CT to many new imaging applications because phase changes are more sensitive to density variations in soft tissues than standard absorption imaging. We further review the impact of deep learning on micro-CT. We feature several recent works which have successfully applied deep learning to micro-CT data, and we outline several challenges specific to micro-CT.Conclusions
All of these advancements establish micro-CT imaging at the forefront of preclinical research, able to provide anatomical, functional, and even molecular information while serving as a testbench for translational research.Item Open Access Computed tomography dose index and dose length product for cone-beam CT: Monte Carlo simulations.(Journal of applied clinical medical physics, 2011-01-19) Kim, Sangroh; Song, Haijun; Samei, Ehsan; Yin, Fang-Fang; Yoshizumi, Terry TDosimetry in kilovoltage cone beam computed tomography (CBCT) is a challenge due to the limitation of physical measurements. To address this, we used a Monte Carlo (MC) method to estimate the CT dose index (CTDI) and the dose length product (DLP) for a commercial CBCT system. As Dixon and Boone showed that CTDI concept can be applicable to both CBCT and conventional CT, we evaluated weighted CT dose index (CTDI(w)) and DLP for a commercial CBCT system. Two extended CT phantoms were created in our BEAMnrc/EGSnrc MC system. Before the simulations, the beam collimation of a Varian On-Board Imager (OBI) system was measured with radiochromic films (model: XR-QA). The MC model of the OBI X-ray tube, validated in a previous study, was used to acquire the phase space files of the full-fan and half-fan cone beams. Then, DOSXYZnrc user code simulated a total of 20 CBCT scans for the nominal beam widths from 1 cm to 10 cm. After the simulations, CBCT dose profiles at center and peripheral locations were extracted and integrated (dose profile integral, DPI) to calculate the CTDI per each beam width. The weighted cone-beam CTDI (CTDI(w,l)) was calculated from DPI values and mean CTDI(w,l) (CTDI(w,l)) and DLP were derived. We also evaluated the differences of CTDI(w) values between MC simulations and point dose measurements using standard CT phantoms. In results, it was found that CTDI(w,600) was 8.74 ± 0.01 cGy for head and CTDI(w,900) was 4.26 ± 0.01 cGy for body scan. The DLP was found to be proportional to the beam collimation. We also found that the point dose measurements with standard CT phantoms can estimate the CTDI within 3% difference compared to the full integrated CTDI from the MC method. This study showed the usability of CTDI as a dose index and DLP as a total dose descriptor in CBCT scans.Item Open Access Deep learning based spectral extrapolation for dual-source, dual-energy x-ray computed tomography.(Medical physics, 2020-09) Clark, Darin P; Schwartz, Fides R; Marin, Daniele; Ramirez-Giraldo, Juan C; Badea, Cristian TPurpose
Data completion is commonly employed in dual-source, dual-energy computed tomography (CT) when physical or hardware constraints limit the field of view (FoV) covered by one of two imaging chains. Practically, dual-energy data completion is accomplished by estimating missing projection data based on the imaging chain with the full FoV and then by appropriately truncating the analytical reconstruction of the data with the smaller FoV. While this approach works well in many clinical applications, there are applications which would benefit from spectral contrast estimates over the larger FoV (spectral extrapolation)-e.g. model-based iterative reconstruction, contrast-enhanced abdominal imaging of large patients, interior tomography, and combined temporal and spectral imaging.Methods
To document the fidelity of spectral extrapolation and to prototype a deep learning algorithm to perform it, we assembled a data set of 50 dual-source, dual-energy abdominal x-ray CT scans (acquired at Duke University Medical Center with 5 Siemens Flash scanners; chain A: 50 cm FoV, 100 kV; chain B: 33 cm FoV, 140 kV + Sn; helical pitch: 0.8). Data sets were reconstructed using ReconCT (v14.1, Siemens Healthineers): 768 × 768 pixels per slice, 50 cm FoV, 0.75 mm slice thickness, "Dual-Energy - WFBP" reconstruction mode with dual-source data completion. A hybrid architecture consisting of a learned piecewise linear transfer function (PLTF) and a convolutional neural network (CNN) was trained using 40 scans (five scans reserved for validation, five for testing). The PLTF learned to map chain A spectral contrast to chain B spectral contrast voxel-wise, performing an image domain analog of dual-source data completion with approximate spectral reweighting. The CNN with its U-net structure then learned to improve the accuracy of chain B contrast estimates by copying chain A structural information, by encoding prior chain A, chain B contrast relationships, and by generalizing feature-contrast associations. Training was supervised, using data from within the 33-cm chain B FoV to optimize and assess network performance.Results
Extrapolation performance on the testing data confirmed our network's robustness and ability to generalize to unseen data from different patients, yielding maximum extrapolation errors of 26 HU following the PLTF and 7.5 HU following the CNN (averaged per target organ). Degradation of network performance when applied to a geometrically simple phantom confirmed our method's reliance on feature-contrast relationships in correctly inferring spectral contrast. Integrating our image domain spectral extrapolation network into a standard dual-source, dual-energy processing pipeline for Siemens Flash scanner data yielded spectral CT data with adequate fidelity for the generation of both 50 keV monochromatic images and material decomposition images over a 30-cm FoV for chain B when only 20 cm of chain B data were available for spectral extrapolation.Conclusions
Even with a moderate amount of training data, deep learning methods are capable of robustly inferring spectral contrast from feature-contrast relationships in spectral CT data, leading to spectral extrapolation performance well beyond what may be expected at face value. Future work reconciling spectral extrapolation results with original projection data is expected to further improve results in outlying and pathological cases.Item Open Access Deep learning-based motion compensation for four-dimensional cone-beam computed tomography (4D-CBCT) reconstruction.(Medical physics, 2023-02) Zhang, Zhehao; Liu, Jiaming; Yang, Deshan; Kamilov, Ulugbek S; Hugo, Geoffrey DBackground
Motion-compensated (MoCo) reconstruction shows great promise in improving four-dimensional cone-beam computed tomography (4D-CBCT) image quality. MoCo reconstruction for a 4D-CBCT could be more accurate using motion information at the CBCT imaging time than that obtained from previous 4D-CT scans. However, such data-driven approaches are hampered by the quality of initial 4D-CBCT images used for motion modeling.Purpose
This study aims to develop a deep-learning method to generate high-quality motion models for MoCo reconstruction to improve the quality of final 4D-CBCT images.Methods
A 3D artifact-reduction convolutional neural network (CNN) was proposed to improve conventional phase-correlated Feldkamp-Davis-Kress (PCF) reconstructions by reducing undersampling-induced streaking artifacts while maintaining motion information. The CNN-generated artifact-mitigated 4D-CBCT images (CNN enhanced) were then used to build a motion model which was used by MoCo reconstruction (CNN+MoCo). The proposed procedure was evaluated using in-vivo patient datasets, an extended cardiac-torso (XCAT) phantom, and the public SPARE challenge datasets. The quality of reconstructed images for XCAT phantom and SPARE datasets was quantitatively assessed using root-mean-square-error (RMSE) and normalized cross-correlation (NCC).Results
The trained CNN effectively reduced the streaking artifacts of PCF CBCT images for all datasets. More detailed structures can be recovered using the proposed CNN+MoCo reconstruction procedure. XCAT phantom experiments showed that the accuracy of estimated motion model using CNN enhanced images was greatly improved over PCF. CNN+MoCo showed lower RMSE and higher NCC compared to PCF, CNN enhanced and conventional MoCo. For the SPARE datasets, the average (± standard deviation) RMSE in mm-1 for body region of PCF, CNN enhanced, conventional MoCo and CNN+MoCo were 0.0040 ± 0.0009, 0.0029 ± 0.0002, 0.0024 ± 0.0003 and 0.0021 ± 0.0003. Corresponding NCC were 0.84 ± 0.05, 0.91 ± 0.05, 0.91 ± 0.05 and 0.93 ± 0.04.Conclusions
CNN-based artifact reduction can substantially reduce the artifacts in the initial 4D-CBCT images. The improved images could be used to enhance the motion modeling and ultimately improve the quality of the final 4D-CBCT images reconstructed using MoCo.Item Open Access Dual source hybrid spectral micro-CT using an energy-integrating and a photon-counting detector.(Physics in medicine and biology, 2020-10-21) Holbrook, MD; Clark, DP; Badea, CTPreclinical micro-CT provides a hotbed in which to develop new imaging technologies, including spectral CT using photon counting detector (PCD) technology. Spectral imaging using PCDs promises to expand x-ray CT as a functional imaging modality, capable of molecular imaging, while maintaining CT's role as a powerful anatomical imaging modality. However, the utility of PCDs suffers due to distorted spectral measurements, affecting the accuracy of material decomposition. We attempt to improve material decomposition accuracy using our novel hybrid dual-source micro-CT system which combines a PCD and an energy integrating detector. Comparisons are made between PCD-only and hybrid CT results, both reconstructed with our iterative, multi-channel algorithm based on the split Bregman method and regularized with rank-sparse kernel regression. Multi-material decomposition is performed post-reconstruction for separation of iodine (I), gold (Au), gadolinium (Gd), and calcium (Ca). System performance is evaluated first in simulations, then in micro-CT phantoms, and finally in an in vivo experiment with a genetically modified p53fl/fl mouse cancer model with Au, Gd, and I nanoparticle (NP)-based contrasts agents. Our results show that the PCD-only and hybrid CT reconstructions offered very similar spatial resolution at 10% MTF (PCD: 3.50 lp mm-1; hybrid: 3.47 lp mm-1) and noise characteristics given by the noise power spectrum. For material decomposition we note successful separation of the four basis materials. We found that hybrid reconstruction reduces RMSE by an average of 37% across all material maps when compared to PCD-only of similar dose but does not provide much difference in terms of concentration accuracy. The in vivo results show separation of targeted Au and accumulated Gd NPs in the tumor from intravascular iodine NPs and bone. Hybrid spectral micro-CT can benefit nanotechnology and cancer research by providing quantitative imaging to test and optimize various NPs for diagnostic and therapeutic applications.Item Open Access Effect of lithotripter focal width on stone comminution in shock wave lithotripsy.(J Acoust Soc Am, 2010-04) Qin, Jun; Simmons, W Neal; Sankin, Georgy; Zhong, PeiUsing a reflector insert, the original HM-3 lithotripter field at 20 kV was altered significantly with the peak positive pressure (p(+)) in the focal plane increased from 49 to 87 MPa while the -6 dB focal width decreased concomitantly from 11 to 4 mm. Using the original reflector, p(+) of 33 MPa with a -6 dB focal width of 18 mm were measured in a pre-focal plane 15-mm proximal to the lithotripter focus. However, the acoustic pulse energy delivered to a 28-mm diameter area around the lithotripter axis was comparable ( approximately 120 mJ). For all three exposure conditions, similar stone comminution ( approximately 70%) was produced in a mesh holder of 15 mm after 250 shocks. In contrast, stone comminution produced by the modified reflector either in a 15-mm finger cot (45%) or in a 30-mm membrane holder (14%) was significantly reduced from the corresponding values (56% and 26%) produced by the original reflector (no statistically significant differences were observed between the focal and pre-focal planes). These observations suggest that a low-pressure/broad focal width lithotripter field will produce better stone comminution than its counterpart with high-pressure/narrow focal width under clinically relevant in vitro comminution conditions.Item Open Access Evaluation of dosimetric uncertainty caused by MR geometric distortion in MRI-based liver SBRT treatment planning.(Journal of applied clinical medical physics, 2019-02) Han, Silu; Yin, Fang-Fang; Cai, JingPURPOSE:MRI-based treatment planning is a promising technique for liver stereotactic-body radiation therapy (SBRT) treatment planning to improve target volume delineation and reduce radiation dose to normal tissues. MR geometric distortion, however, is a source of potential error in MRI-based treatment planning. The aim of this study is to investigate dosimetric uncertainties caused by MRI geometric distortion in MRI-based treatment planning for liver SBRT. MATERIALS AND METHODS:The study was conducted using computer simulations. 3D MR geometric distortion was simulated using measured data in the literature. Planning MR images with distortions were generated by integrating the simulated 3D MR geometric distortion onto planning CT images. MRI-based treatment plans were then generated on the planning MR images with two dose calculation methods: (1) using original CT numbers; and (2) using organ-specific assigned CT numbers. Dosimetric uncertainties of various dose-volume-histogram parameters were determined as their differences between the simulated MRI-based plans and the original clinical CT-based plans for five liver SBRT cases. RESULTS:The average simulated distortion for the five liver SBRT cases was 2.77 mm. In the case of using original CT numbers for dose calculation, the average dose uncertainties for target volumes and critical structures were <0.5 Gy, and the average target volume percentage at prescription dose uncertainties was 0.97%. In the case of using assigned CT numbers, the average dose uncertainties for target volumes and critical structures were <1.0 Gy, and the average target volume percentage at prescription dose uncertainties was 2.02%. CONCLUSIONS:Dosimetric uncertainties caused by MR geometric distortion in MRI-based liver SBRT treatment planning was generally small (<1 Gy) when the distortion is 3 mm.Item Open Access Evaluation of integrated respiratory gating systems on a Novalis Tx system.(Journal of applied clinical medical physics, 2011-04-04) Chang, Zheng; Liu, Tonghai; Cai, Jing; Chen, Qing; Wang, Zhiheng; Yin, Fang-FangThe purpose of this study was to investigate the accuracy of motion tracking and radiation delivery control of integrated gating systems on a Novalis Tx system. The study was performed on a Novalis Tx system, which is equipped with Varian Real-time Position Management (RPM) system, and BrainLAB ExacTrac gating systems. In this study, the two systems were assessed on accuracy of both motion tracking and radiation delivery control. To evaluate motion tracking, two artificial motion profiles and five patients' respiratory profiles were used. The motion trajectories acquired by the two gating systems were compared against the references. To assess radiation delivery control, time delays were measured using a single-exposure method. More specifically, radiation is delivered with a 4 mm diameter cone within the phase range of 10%-45% for the BrainLAB ExacTrac system, and within the phase range of 0%-25% for the Varian RPM system during expiration, each for three times. Radiochromic films were used to record the radiation exposures and to calculate the time delays. In the work, the discrepancies were quantified using the parameters of mean and standard deviation (SD). Pearson's product-moment correlational analysis was used to test correlation of the data, which is quantified using a parameter of r. The trajectory profiles acquired by the gating systems show good agreement with those reference profiles. A quantitative analysis shows that the average mean discrepancies between BrainLAB ExacTrac system and known references are 1.5 mm and 1.9 mm for artificial and patient profiles, with the maximum motion amplitude of 28.0 mm. As for the Varian RPM system, the corresponding average mean discrepancies are 1.1 mm and 1.7 mm for artificial and patient profiles. With the proposed single-exposure method, the time delays are found to be 0.20 ± 0.03 seconds and 0.09 ± 0.01 seconds for BrainLAB ExacTrac and Varian RPM systems, respectively. The results indicate the systems can track motion and control radiation delivery with reasonable accuracy. The proposed single-exposure method has been demonstrated to be feasible in measuring time delay efficiently.Item Open Access Evaluation of monoenergetic imaging to reduce metallic instrumentation artifacts in computed tomography of the cervical spine.(Journal of neurosurgery. Spine, 2015-01) Komlosi, Peter; Grady, Deborah; Smith, Justin S; Shaffrey, Christopher I; Goode, Allen R; Judy, Patricia G; Shaffrey, Mark; Wintermark, MaxObject
Monoenergetic imaging with dual-energy CT has been proposed to reduce metallic artifacts in comparison with conventional polychromatic CT. The purpose of this study is to systematically evaluate and define the optimal dual-energy CT imaging parameters for specific cervical spinal implant alloy compositions.Methods
Spinal fixation rods of cobalt-chromium or titanium alloy inserted into the cervical spine section of an Alderson Rando anthropomorphic phantom were imaged ex vivo with fast-kilovoltage switching CT at 80 and 140 peak kV. The collimation width and field of view were varied between 20 and 40 mm and medium to large, respectively. Extrapolated monoenergetic images were generated at 70, 90, 110, and 130 kiloelectron volts (keV). The standard deviation of voxel intensities along a circular line profile around the spine was used as an index of the magnitude of metallic artifact.Results
The metallic artifact was more conspicuous around the fixation rods made of cobalt-chromium than those of titanium alloy. The magnitude of metallic artifact seen with titanium fixation rods was minimized at monoenergies of 90 keV and higher, using a collimation width of 20 mm and large field of view. The magnitude of metallic artifact with cobalt-chromium fixation rods was minimized at monoenergies of 110 keV and higher; collimation width or field of view had no effect.Conclusions
Optimization of acquisition settings used with monoenergetic CT studies might yield reduced metallic artifacts.Item Open Access Fiber-optic interferometric two-dimensional scattering-measurement system.(Opt Lett, 2010-05-15) Zhu, Yizheng; Giacomelli, Michael G; Wax, AdamWe present a fiber-optic interferometric system for measuring depth-resolved scattering in two angular dimensions using Fourier-domain low-coherence interferometry. The system is a unique hybrid of the Michelson and Sagnac interferometer topologies. The collection arm of the interferometer is scanned in two dimensions to detect angular scattering from the sample, which can then be analyzed to determine the structure of the scatterers. A key feature of the system is the full control of polarization of both the illumination and the collection fields, allowing for polarization-sensitive detection, which is essential for two-dimensional angular measurements. System performance is demonstrated using a double-layer microsphere phantom. Experimental data from samples with different sizes and acquired with different polarizations show excellent agreement with Mie theory, producing structural measurements with subwavelength accuracy.Item Open Access Harmonic source wavefront aberration correction for ultrasound imaging.(2010) Dianis, Scott W.Aberration is a correctable phenomenon that degrades diagnostic quality in a significant number of ultrasound images. Previous aberration correction studies have focused on development of aberration estimation algorithms or on aberration reduction by using harmonic imaging. In the past, a major drawback of aberration estimation algorithms has been the assumptions required about the imaging target, assumptions that can limit clinical application where correction for multiple locations within a scan may be required. Harmonic imaging attempts to reduce the effect of aberration, without making assumptions about the imaging target, by using a lower-frequency transmit beam that is less prone to aberration. However, harmonic imaging does not correct for any aberration that may remain. It is hypothesized that a harmonic source wavefront correction technique is capable of creating a point-like acoustical source that allows for estimation and correction of two-dimensional aberration in a clinical setting. Harmonic source wavefront correction utilizes the reduced aberration of harmonic imaging to create a known acoustical source to satisfy the assumptions of the aberration estimation algorithms, thus improving their clinical application. Generation of a point-like acoustical source in the presence of aberration is demonstrated using both spatially correlated and spatially uncorrelated electronic aberrators varying in strength from 0.25π radians to 1.16π radians RMS focusing error. Beam properties of the 2.08 MHz fundamental, 4.16 MHz generated harmonic, and 4.17 MHz imaging beams were compared; in the presence of aberration, relative peak beam amplitude of the 4.16 MHz generated harmonic beam was up to 81% higher than the 4.17 MHz imaging beam, while -6 dB beam width indicated the 4.16 MHz generated harmonic beam was 88% narrower and more point-like than the 2.08 MHz fundamental beam. The feasibility of harmonic source wavefront correction was demonstrated by correcting for spatially uncorrelated electronic aberrators in a water tank using a point target, specular reflector, and speckle region as correction targets. Harmonic source wavefront correction was paired with a cross-correlation algorithm to estimate corrective delays and was most effective in correcting peak amplitude of the 4.17 MHz imaging beam using a point target (up to 94% improvement), followed by use of a specular reflector (up to 83% improvement), followed by use of a speckle region (up to 47% improvement). Aberration correction is sensitive to signal-to-noise ratio (SNR),and correction utilizing the 2.08 MHz fundamental, which provided higher SNR, was more effective than correction utilizing the more point-like 4.16 MHz harmonic for the experimental setup used. A harmonic SNR of 14 dB was estimated as necessary for harmonic-based correction performance to equal or surpass fundamental-based correction, regardless of fundamental SNR. Finally, performance of harmonic source wavefront correction was quantified in a clinical setting. Correction of spatially correlated electronic aberrators was performed using both ex vivo porcine kidneys and the left kidneys of 11 human volunteers as correction targets. Correction utilizing porcine kidney resulted in 10 dB greater improvement in peak beam amplitude than correction utilizing the left kidney of human volunteers. Body wall aberration present in the human volunteers was not accounted for during correction and likely caused the disparity in correction performance. An average upper limit for body wall aberration for the human subjects was estimated at 65 ns (±9 ns) RMSItem Open Access Hybrid spectral CT reconstruction.(PLoS One, 2017) Clark, Darin P; Badea, Cristian TCurrent photon counting x-ray detector (PCD) technology faces limitations associated with spectral fidelity and photon starvation. One strategy for addressing these limitations is to supplement PCD data with high-resolution, low-noise data acquired with an energy-integrating detector (EID). In this work, we propose an iterative, hybrid reconstruction technique which combines the spectral properties of PCD data with the resolution and signal-to-noise characteristics of EID data. Our hybrid reconstruction technique is based on an algebraic model of data fidelity which substitutes the EID data into the data fidelity term associated with the PCD reconstruction, resulting in a joint reconstruction problem. Within the split Bregman framework, these data fidelity constraints are minimized subject to additional constraints on spectral rank and on joint intensity-gradient sparsity measured between the reconstructions of the EID and PCD data. Following a derivation of the proposed technique, we apply it to the reconstruction of a digital phantom which contains realistic concentrations of iodine, barium, and calcium encountered in small-animal micro-CT. The results of this experiment suggest reliable separation and detection of iodine at concentrations ≥ 5 mg/ml and barium at concentrations ≥ 10 mg/ml in 2-mm features for EID and PCD data reconstructed with inherent spatial resolutions of 176 μm and 254 μm, respectively (point spread function, FWHM). Furthermore, hybrid reconstruction is demonstrated to enhance spatial resolution within material decomposition results and to improve low-contrast detectability by as much as 2.6 times relative to reconstruction with PCD data only. The parameters of the simulation experiment are based on an in vivo micro-CT experiment conducted in a mouse model of soft-tissue sarcoma. Material decomposition results produced from this in vivo data demonstrate the feasibility of distinguishing two K-edge contrast agents with a spectral separation on the order of the energy resolution of the PCD hardware.Item Open Access Metrology Standards for Quantitative Imaging Biomarkers.(Radiology, 2015-12) Sullivan, Daniel C; Obuchowski, Nancy A; Kessler, Larry G; Raunig, David L; Gatsonis, Constantine; Huang, Erich P; Kondratovich, Marina; McShane, Lisa M; Reeves, Anthony P; Barboriak, Daniel P; Guimaraes, Alexander R; Wahl, Richard L; RSNA-QIBA Metrology Working GroupAlthough investigators in the imaging community have been active in developing and evaluating quantitative imaging biomarkers (QIBs), the development and implementation of QIBs have been hampered by the inconsistent or incorrect use of terminology or methods for technical performance and statistical concepts. Technical performance is an assessment of how a test performs in reference objects or subjects under controlled conditions. In this article, some of the relevant statistical concepts are reviewed, methods that can be used for evaluating and comparing QIBs are described, and some of the technical performance issues related to imaging biomarkers are discussed. More consistent and correct use of terminology and study design principles will improve clinical research, advance regulatory science, and foster better care for patients who undergo imaging studies.Item Open Access On the sensitivity of TG-119 and IROC credentialing to TPS commissioning errors.(Journal of applied clinical medical physics, 2016-01-08) McVicker, Drew; Yin, Fang-Fang; Adamson, Justus DWe investigate the sensitivity of IMRT commissioning using the TG-119 C-shape phantom and credentialing with the IROC head and neck phantom to treatment planning system commissioning errors. We introduced errors into the various aspects of the commissioning process for a 6X photon energy modeled using the analytical anisotropic algorithm within a commercial treatment planning system. Errors were implemented into the various components of the dose calculation algorithm including primary photons, secondary photons, electron contamination, and MLC parameters. For each error we evaluated the probability that it could be committed unknowingly during the dose algorithm commissioning stage, and the probability of it being identified during the verification stage. The clinical impact of each commissioning error was evaluated using representative IMRT plans including low and intermediate risk prostate, head and neck, mesothelioma, and scalp; the sensitivity of the TG-119 and IROC phantoms was evaluated by comparing dosimetric changes to the dose planes where film measurements occur and change in point doses where dosimeter measurements occur. No commissioning errors were found to have both a low probability of detection and high clinical severity. When errors do occur, the IROC credentialing and TG 119 commissioning criteria are generally effective at detecting them; however, for the IROC phantom, OAR point-dose measurements are the most sensitive despite being currently excluded from IROC analysis. Point-dose measurements with an absolute dose constraint were the most effective at detecting errors, while film analysis using a gamma comparison and the IROC film distance to agreement criteria were less effective at detecting the specific commissioning errors implemented here.