Browsing by Subject "Phosphatidylinositol 3-Kinases"
Now showing 1 - 15 of 15
Results Per Page
Sort Options
Item Restricted beta-arrestin-1 competitively inhibits insulin-induced ubiquitination and degradation of insulin receptor substrate 1.(Mol Cell Biol, 2004-10) Usui, Isao; Imamura, Takeshi; Huang, Jie; Satoh, Hiroaki; Shenoy, Sudha K; Lefkowitz, Robert J; Hupfeld, Christopher J; Olefsky, Jerrold Mbeta-arrestin-1 is an adaptor protein that mediates agonist-dependent internalization and desensitization of G-protein-coupled receptors (GPCRs) and also participates in the process of heterologous desensitization between receptor tyrosine kinases and GPCR signaling. In the present study, we determined whether beta-arrestin-1 is involved in insulin-induced insulin receptor substrate 1 (IRS-1) degradation. Overexpression of wild-type (WT) beta-arrestin-1 attenuated insulin-induced degradation of IRS-1, leading to increased insulin signaling downstream of IRS-1. When endogenous beta-arrestin-1 was knocked down by transfection of beta-arrestin-1 small interfering RNA, insulin-induced IRS-1 degradation was enhanced. Insulin stimulated the association of IRS-1 and Mdm2, an E3 ubiquitin ligase, and this association was inhibited to overexpression of WT beta-arrestin-1, which led by decreased ubiquitin content of IRS-1, suggesting that both beta-arrestin-1 and IRS-1 competitively bind to Mdm2. In summary, we have found the following: (i) beta-arrestin-1 can alter insulin signaling by inhibiting insulin-induced proteasomal degradation of IRS-1; (ii) beta-arrestin-1 decreases the rate of ubiquitination of IRS-1 by competitively binding to endogenous Mdm2, an E3 ligase that can ubiquitinate IRS-1; (iii) dephosphorylation of S412 on beta-arrestin and the amino terminus of beta-arrestin-1 are required for this effect of beta-arrestin on IRS-1 degradation; and (iv) inhibition of beta-arrestin-1 leads to enhanced IRS-1 degradation and accentuated cellular insulin resistance.Item Open Access Bone Marrow Mesenchymal Stem Cell Transplantation Increases GAP-43 Expression via ERK1/2 and PI3K/Akt Pathways in Intracerebral Hemorrhage.(Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology, 2017-01) Cui, Jianzhong; Cui, Changmeng; Cui, Ying; Li, Ran; Sheng, Huaxin; Jiang, Xiaohua; Tian, Yanxia; Wang, Kaijie; Gao, JunlingBackground/aims
Intracerebral hemorrhage (ICH) occurs in hypertensive patients and results in high rates of mortality and disability. This study determined whether bone marrow mesenchymal stem cell (BMSC) transplantation affects axonal regeneration and examined the underlying mechanisms after the administration of PD98059 (p-ERK1/2 inhibitor) or/ and LY294002 (PI3K inhibitor). The hypothesis that was intended to be tested was that BMSC transplantation regulates the expression of growth-associated protein-43 (GAP-43) via the ERK1/2 and PI3K/Akt signaling pathways.Methods
Seventy-five male rats (250-280 g) were subjected to intracerebral blood injection and then randomly received a vehicle, BMSCs, PD98059 or LY294002 treatment. Neurological deficits were evaluated prior to injury and at 1, 3 and 7 days post-injury. The expression of GAP-43, Akt, p-Akt, ERK1/2, and p-ERK1/2 proteins was measured by western blot analysis.Results
BMSC transplantation attenuated neurological deficits 3-7 days post-ICH. The expression of GAP-43 was increased 3 days following BMSC transplantation. However, this increase was inhibited by either PD98059 or LY294002 treatment. Treatment with both PD98059 and LY294002 was more effective than was treatment with an individual compound.Conclusion
BMSC transplantation could attenuate neurological deficits and activate axonal regeneration in this rat ICH model. The protective effects might be associated with increased GAP-43 expression by activating both the ERK1/2 and PI3K/Akt signaling pathways.Item Open Access Deregulated PP1α phosphatase activity towards MAPK activation is antagonized by a tumor suppressive failsafe mechanism.(Nature communications, 2018-01-15) Chen, Ming; Wan, Lixin; Zhang, Jiangwen; Zhang, Jinfang; Mendez, Lourdes; Clohessy, John G; Berry, Kelsey; Victor, Joshua; Yin, Qing; Zhu, Yuan; Wei, Wenyi; Pandolfi, Pier PaoloThe mitogen-activated protein kinase (MAPK) pathway is frequently aberrantly activated in advanced cancers, including metastatic prostate cancer (CaP). However, activating mutations or gene rearrangements among MAPK signaling components, such as Ras and Raf, are not always observed in cancers with hyperactivated MAPK. The mechanisms underlying MAPK activation in these cancers remain largely elusive. Here we discover that genomic amplification of the PPP1CA gene is highly enriched in metastatic human CaP. We further identify an S6K/PP1α/B-Raf signaling pathway leading to activation of MAPK signaling that is antagonized by the PML tumor suppressor. Mechanistically, we find that PP1α acts as a B-Raf activating phosphatase and that PML suppresses MAPK activation by sequestering PP1α into PML nuclear bodies, hence repressing S6K-dependent PP1α phosphorylation, 14-3-3 binding and cytoplasmic accumulation. Our findings therefore reveal a PP1α/PML molecular network that is genetically altered in human cancer towards aberrant MAPK activation, with important therapeutic implications.Item Open Access Direct TLR2 signaling is critical for NK cell activation and function in response to vaccinia viral infection.(PLoS Pathog, 2010-03-12) Martinez, Jennifer; Huang, Xiaopei; Yang, YipingNatural killer (NK) cells play an essential role in innate immune control of poxviral infections in vivo. However, the mechanism(s) underlying NK cell activation and function in response to poxviruses remains poorly understood. In a mouse model of infection with vaccinia virus (VV), the most studied member of the poxvirus family, we identified that the Toll-like receptor (TLR) 2-myeloid differentiating factor 88 (MyD88) pathway was critical for the activation of NK cells and the control of VV infection in vivo. We further showed that TLR2 signaling on NK cells, but not on accessory cells such as dendritic cells (DCs), was necessary for NK cell activation and that this intrinsic TLR2-MyD88 signaling pathway was required for NK cell activation and played a critical role in the control of VV infection in vivo. In addition, we showed that the activating receptor NKG2D was also important for efficient NK activation and function, as well as recognition of VV-infected targets. We further demonstrated that VV could directly activate NK cells via TLR2 in the presence of cytokines in vitro and TLR2-MyD88-dependent activation of NK cells by VV was mediated through the phosphatidylinositol 3-kinase (PI3K)-extracellular signal-regulated kinase (ERK) pathway. Taken together, these results represent the first evidence that intrinsic TLR signaling is critical for NK cell activation and function in the control of a viral infection in vivo, indicate that multiple pathways are required for efficient NK cell activation and function in response to VV infection, and may provide important insights into the design of effective strategies to combat poxviral infections.Item Open Access Dual modulation of cell survival and cell death by beta(2)-adrenergic signaling in adult mouse cardiac myocytes.(Proc Natl Acad Sci U S A, 2001-02-13) Zhu, WZ; Zheng, M; Koch, WJ; Lefkowitz, RJ; Kobilka, BK; Xiao, RPThe goal of this study was to determine whether beta(1)-adrenergic receptor (AR) and beta(2)-AR differ in regulating cardiomyocyte survival and apoptosis and, if so, to explore underlying mechanisms. One potential mechanism is that cardiac beta(2)-AR can activate both G(s) and G(i) proteins, whereas cardiac beta(1)-AR couples only to G(s). To avoid complicated crosstalk between beta-AR subtypes, we expressed beta(1)-AR or beta(2)-AR individually in adult beta(1)/beta(2)-AR double knockout mouse cardiac myocytes by using adenoviral gene transfer. Stimulation of beta(1)-AR, but not beta(2)-AR, markedly induced myocyte apoptosis, as indicated by increased terminal deoxynucleotidyltransferase-mediated UTP end labeling or Hoechst staining positive cells and DNA fragmentation. In contrast, beta(2)-AR (but not beta(1)-AR) stimulation elevated the activity of Akt, a powerful survival signal; this effect was fully abolished by inhibiting G(i), G(beta gamma), or phosphoinositide 3 kinase (PI3K) with pertussis toxin, beta ARK-ct (a peptide inhibitor of G(beta gamma)), or LY294002, respectively. This indicates that beta(2)-AR activates Akt via a G(i)-G(beta gamma)-PI3K pathway. More importantly, inhibition of the G(i)-G(beta gamma)-PI3K-Akt pathway converts beta(2)-AR signaling from survival to apoptotic. Thus, stimulation of a single class of receptors, beta(2)-ARs, elicits concurrent apoptotic and survival signals in cardiac myocytes. The survival effect appears to predominate and is mediated by the G(i)-G(beta gamma)-PI3K-Akt signaling pathway.Item Open Access Endosome and INPP4B.(Oncotarget, 2016-01) Chew, Chen Li; Chen, Ming; Pandolfi, Pier PaoloItem Open Access G protein beta gamma subunits stimulate phosphorylation of Shc adapter protein.(Proc Natl Acad Sci U S A, 1995-09-26) Touhara, K; Hawes, BE; van Biesen, T; Lefkowitz, RJThe mechanism of mitogen-activated protein (MAP) kinase activation by pertussis toxin-sensitive Gi-coupled receptors is known to involve the beta gamma subunits of heterotrimeric G proteins (G beta gamma), p21ras activation, and an as-yet-unidentified tyrosine kinase. To investigate the mechanism of G beta gamma-stimulated p21ras activation, G beta gamma-mediated tyrosine phosphorylation was examined by overexpressing G beta gamma or alpha 2-C10 adrenergic receptors (ARs) that couple to Gi in COS-7 cells. Immunoprecipitation of phosphotyrosine-containing proteins revealed a 2- to 3-fold increase in the phosphorylation of two proteins of approximately 50 kDa (designated as p52) in G beta gamma-transfected cells or in alpha 2-C10 AR-transfected cells stimulated with the agonist UK-14304. The latter response was pertussis toxin sensitive. These proteins (p52) were also specifically immunoprecipitated with anti-Shc antibodies and comigrated with two Shc proteins, 46 and 52 kDa. The G beta gamma- or alpha 2-C10 AR-stimulated p52 (Shc) phosphorylation was inhibited by coexpression of the carboxyl terminus of beta-adrenergic receptor kinase (a G beta gamma-binding pleckstrin homology domain peptide) or by the tyrosine kinase inhibitors genistein and herbimycin A, but not by a dominant negative mutant of p21ras. Worthmannin, a specific inhibitor of phosphatidylinositol 3-kinase (PI3K) inhibited phosphorylation of p52 (Shc), implying involvement of PI3K. These results suggest that G beta gamma-stimulated Shc phosphorylation represents an early step in the pathway leading to p21ras activation, similar to the mechanism utilized by growth factor tyrosine kinase receptors.Item Open Access In Vivo Role of INPP4B in Tumor and Metastasis Suppression through Regulation of PI3K-AKT Signaling at Endosomes.(Cancer discovery, 2015-07) Li Chew, Chen; Lunardi, Andrea; Gulluni, Federico; Ruan, Daniel T; Chen, Ming; Salmena, Leonardo; Nishino, Michiya; Papa, Antonella; Ng, Christopher; Fung, Jacqueline; Clohessy, John G; Sasaki, Junko; Sasaki, Takehiko; Bronson, Roderick T; Hirsch, Emilio; Pandolfi, Pier PaoloThe phosphatases PTEN and INPP4B have been proposed to act as tumor suppressors by antagonizing PI3K-AKT signaling and are frequently dysregulated in human cancer. Although PTEN has been extensively studied, little is known about the underlying mechanisms by which INPP4B exerts its tumor-suppressive function and its role in tumorigenesis in vivo. Here, we show that a partial or complete loss of Inpp4b morphs benign thyroid adenoma lesions in Pten heterozygous mice into lethal and metastatic follicular-like thyroid cancer (FTC). Importantly, analyses of human thyroid cancer cell lines and specimens reveal INPP4B downregulation in FTC. Mechanistically, we find that INPP4B, but not PTEN, is enriched in the early endosomes of thyroid cancer cells, where it selectively inhibits AKT2 activation and in turn tumor proliferation and anchorage-independent growth. We therefore identify INPP4B as a novel tumor suppressor in FTC oncogenesis and metastasis through localized regulation of the PI3K-AKT pathway at the endosomes.Although both PTEN and INPP4B can inhibit PI3K-AKT signaling through their lipid phosphatase activities, here we demonstrate lack of an epistatic relationship between the two tumor suppressors. Instead, the qualitative regulation of PI3K-AKT2 signaling by INPP4B provides a mechanism for their cooperation in suppressing thyroid tumorigenesis and metastasis.Item Open Access Inhibition of Pten deficient Castration Resistant Prostate Cancer by Targeting of the SET - PP2A Signaling axis.(Sci Rep, 2015-11-13) Hu, Xiaoyong; Garcia, Consuelo; Fazli, Ladan; Gleave, Martin; Vitek, Michael P; Jansen, Marilyn; Christensen, Dale; Mulholland, David JThe PP2A signaling axis regulates multiple oncogenic drivers of castration resistant prostate cancer (CRPC). We show that targeting the endogenous PP2A regulator, SET (I2PP2A), is a viable strategy to inhibit prostate cancers that are resistant to androgen deprivation therapy. Our data is corroborated by analysis of prostate cancer patient cohorts showing significant elevation of SET transcripts. Tissue microarray analysis reveals that elevated SET expression correlates with clinical cancer grading, duration of neoadjuvant hormone therapy (NHT) and time to biochemical recurrence. Using prostate regeneration assays, we show that in vivo SET overexpression is sufficient to induce hyperplasia and prostatic intraepithelial neoplasia. Knockdown of SET induced significant reductions in tumorgenesis both in murine and human xenograft models. To further validate SET as a therapeutic target, we conducted in vitro and in vivo treatments using OP449 - a recently characterized PP2A-activating drug (PAD). OP449 elicits robust anti-cancer effects inhibiting growth in a panel of enzalutamide resistant prostate cancer cell lines. Using the Pten conditional deletion mouse model of prostate cancer, OP449 potently inhibited PI3K-Akt signaling and impeded CRPC progression. Collectively, our data supports a critical role for the SET-PP2A signaling axis in CRPC progression and hormone resistant disease.Item Open Access Ligation of cell surface GRP78 with antibody directed against the COOH-terminal domain of GRP78 suppresses Ras/MAPK and PI 3-kinase/AKT signaling while promoting caspase activation in human prostate cancer cells.(Cancer Biol Ther, 2010-01) Misra, Uma K; Pizzo, Salvatore VWe have previously shown that treatment of prostate cancer and melanoma cells expressing GRP78 on their cell surface with antibody directed against the COOH-terminal domain of GRP78 upregulates and activates p53 causing decreased cell proliferation and upregulated apoptosis. In this report, we demonstrate that treatment of 1-LN prostate cancer cells with this antibody decreases cell surface expression of GRP78, Akt(Thr308) and Akt(Ser473) kinase activities and reduces phosphorylation of FOXO, and GSK3beta. This treatment also suppresses activation of ERK1/2, p38 MAPK and MKK3/6; however, it upregulates MKK4 activity. JNK, as determined by its phosphorylation state, is subsequently activated, triggering apoptosis. Incubation of cells with antibody reduced levels of anti-apoptotic Bcl-2, while elevating pro-apoptotic BAD, BAX and BAK expression as well as cleaved caspases-3, -7, -8 and -9. Silencing GRP78 or p53 gene expression by RNAi prior to antibody treatment abrogated these effects. We conclude that antibody directed against the COOH-terminal domain of GRP78 may prove useful as a pan suppressor of proliferative/survival signaling in cancer cells expressing GRP78 on their cell surface.Item Open Access Novel Genetic Variants for Cartilage Thickness and Hip Osteoarthritis.(PLoS Genet, 2016-10) Castaño-Betancourt, Martha C; Evans, Dan S; Ramos, Yolande FM; Boer, Cindy G; Metrustry, Sarah; Liu, Youfang; den Hollander, Wouter; van Rooij, Jeroen; Kraus, Virginia B; Yau, Michelle S; Mitchell, Braxton D; Muir, Kenneth; Hofman, Albert; Doherty, Michael; Doherty, Sally; Zhang, Weiya; Kraaij, Robert; Rivadeneira, Fernando; Barrett-Connor, Elizabeth; Maciewicz, Rose A; Arden, Nigel; Nelissen, Rob GHH; Kloppenburg, Margreet; Jordan, Joanne M; Nevitt, Michael C; Slagboom, Eline P; Hart, Deborah J; Lafeber, Floris; Styrkarsdottir, Unnur; Zeggini, Eleftheria; Evangelou, Evangelos; Spector, Tim D; Uitterlinden, Andre G; Lane, Nancy E; Meulenbelt, Ingrid; Valdes, Ana M; van Meurs, Joyce BJOsteoarthritis is one of the most frequent and disabling diseases of the elderly. Only few genetic variants have been identified for osteoarthritis, which is partly due to large phenotype heterogeneity. To reduce heterogeneity, we here examined cartilage thickness, one of the structural components of joint health. We conducted a genome-wide association study of minimal joint space width (mJSW), a proxy for cartilage thickness, in a discovery set of 13,013 participants from five different cohorts and replication in 8,227 individuals from seven independent cohorts. We identified five genome-wide significant (GWS, P≤5·0×10-8) SNPs annotated to four distinct loci. In addition, we found two additional loci that were significantly replicated, but results of combined meta-analysis fell just below the genome wide significance threshold. The four novel associated genetic loci were located in/near TGFA (rs2862851), PIK3R1 (rs10471753), SLBP/FGFR3 (rs2236995), and TREH/DDX6 (rs496547), while the other two (DOT1L and SUPT3H/RUNX2) were previously identified. A systematic prioritization for underlying causal genes was performed using diverse lines of evidence. Exome sequencing data (n = 2,050 individuals) indicated that there were no rare exonic variants that could explain the identified associations. In addition, TGFA, FGFR3 and PIK3R1 were differentially expressed in OA cartilage lesions versus non-lesioned cartilage in the same individuals. In conclusion, we identified four novel loci (TGFA, PIK3R1, FGFR3 and TREH) and confirmed two loci known to be associated with cartilage thickness.The identified associations were not caused by rare exonic variants. This is the first report linking TGFA to human OA, which may serve as a new target for future therapies.Item Open Access Role of iPLA(2) in the regulation of Src trafficking and microglia chemotaxis.(Traffic (Copenhagen, Denmark), 2011-07) Lee, Sang-Hyun; Schneider, Claus; Higdon, Ashlee N; Darley-Usmar, Victor M; Chung, Chang YMicroglia are immune effector cells in the central nervous system (CNS) and their activation, migration and proliferation play crucial roles in brain injuries and diseases. We examined the role of intracellular Ca(2+) -independent phospholipase A(2) (iPLA(2)) in the regulation of microglia chemotaxis toward ADP. Inhibition of iPLA(2) by 4-bromoenol lactone (BEL) or iPLA(2) knockdown exerted a significant inhibition on phosphatidylinositol-3-kinase (PI3K) activation and chemotaxis. Further examination revealed that iPLA(2) knockdown abrogated Src activation, which is required for PI3K activation and chemotaxis. Colocalization studies showed that cSrc-GFP was retained in the endosomal recycling compartment (ERC) in iPLA(2) knockdown cells, but the addition of arachidonic acid (AA) could restore cSrc trafficking to the plasma membrane by allowing the formation/release of recycling endosomes associated with cSrc-GFP. Using BODIPY-AA, we showed that AA is selectively enriched in recycling endosomes. These results suggest that AA is required for the cSrc trafficking to the plasma membrane by controlling the formation/release of recycling endosomes from the ERC.Item Open Access SECTM1 Produced by Tumor Cells Attracts Human Monocytes Via CD7-mediated Activation of the PI3K Pathways(J. Investigative Dermatology, 2013-11-13) Kaufman, RETumor-associated macrophages (TAMs) have essential roles in tumor progression and metastasis. Tumor cells recruit myeloid progenitors and monocytes to the tumor site, where they differentiate into TAMs; however, this process is not well studied in humans. Here we show that human CD7, a T-cell and NK cell receptor, is highly expressed by monocytes and macrophages. Expression of CD7 decreases in M-CSF-differentiated macrophages and in melanoma-conditioned medium-induced macrophages (MCMI/Mφ) in comparison to monocytes. A ligand for CD7, SECTM1 (secreted and transmembrane protein 1), is highly expressed in many tumors, including melanoma cells. We show that SECTM1 binds to CD7 and significantly increases monocyte migration by activation of the PI3K (phosphatidylinositol 3'-kinase) pathway. In human melanoma tissues, tumor-infiltrating macrophages expressing CD7 are present. These melanomas, with CD7-positive inflammatory cell infiltrations, frequently highly express SECTM1, including an N-terminal, soluble form, which can be detected in the sera of metastatic melanoma patients but not in normal sera. Taken together, our data demonstrate that CD7 is present on monocytes and tumor macrophages and that its ligand, SECTM1, is frequently expressed in corresponding melanoma tissues, possibly acting as a chemoattractant for monocytes to modulate the melanoma microenvironment.Item Open Access SHP-1 as a critical regulator of Mycoplasma pneumoniae-induced inflammation in human asthmatic airway epithelial cells.(Journal of immunology (Baltimore, Md. : 1950), 2012-04) Wang, Ying; Zhu, Zhou; Church, Tony D; Lugogo, Njira L; Que, Loretta G; Francisco, Dave; Ingram, Jennifer L; Huggins, Molly; Beaver, Denise M; Wright, Jo Rae; Kraft, MonicaAsthma is a chronic inflammatory disease in which airway epithelial cells are the first line of defense against exposure of the airway to infectious agents. Src homology protein (SHP)-1, a protein tyrosine phosphatase, is a negative regulator of signaling pathways that are critical to the development of asthma and host defense. We hypothesize that SHP-1 function is defective in asthma, contributing to the increased inflammatory response induced by Mycoplasma pneumoniae, a pathogen known to exacerbate asthma. M. pneumoniae significantly activated SHP-1 in airway epithelial cells collected from nonasthmatic subjects by bronchoscopy with airway brushing but not in cells from asthmatic subjects. In asthmatic airway epithelial cells, M. pneumoniae induced significant PI3K/Akt phosphorylation, NF-κB activation, and IL-8 production compared with nonasthmatic cells, which were reversed by SHP-1 overexpression. Conversely, SHP-1 knockdown significantly increased IL-8 production and PI3K/Akt and NF-κB activation in the setting of M. pneumoniae infection in nonasthmatic cells, but it did not exacerbate these three parameters already activated in asthmatic cells. Thus, SHP-1 plays a critical role in abrogating M. pneumoniae-induced IL-8 production in nonasthmatic airway epithelial cells through inhibition of PI3K/Akt and NF-κB activity, but it is defective in asthma, resulting in an enhanced inflammatory response to infection.Item Open Access Tocopherol-associated protein suppresses prostate cancer cell growth by inhibition of the phosphoinositide 3-kinase pathway.(Cancer research, 2005-11) Ni, Jing; Wen, Xingqiao; Yao, Jorge; Chang, Hong-Chiang; Yin, Yi; Zhang, Min; Xie, Shaozhen; Chen, Ming; Simons, Brenna; Chang, Philip; di Sant'Agnese, Anthony; Messing, Edward M; Yeh, ShuyuanEpidemiologic studies suggested that vitamin E has a protective effect against prostate cancer. We showed here that tocopherol-associated protein (TAP), a vitamin E-binding protein, promoted vitamin E uptake and facilitated vitamin E antiproliferation effect in prostate cancer cells. Interestingly, without vitamin E treatment, overexpression of TAP in prostate cancer cells significantly suppressed cell growth; knockdown of endogenous TAP by TAP small interfering RNA (siRNA) in nonmalignant prostate HPr-1 cells increased cell growth. Further mechanism dissection studies suggested that the tumor suppressor function of TAP was via down-regulation of phosphoinositide 3-kinase (PI3K)/Akt signaling, but not by modulating cell cycle arrest or androgen receptor signaling. Immunoprecipitation results indicated that TAP inhibited the interaction of PI3K subunits, p110 with p85, and subsequently reduced Akt activity. Constitutively active Akt could negate the TAP-suppressive activity on prostate cancer cell growth. Moreover, stable transfection of TAP in LNCaP cells suppressed LNCaP tumor incidence and growth rate in nude mice. Furthermore, TAP mRNA and protein expression levels were significantly down-regulated in human prostate cancer tissue samples compared with benign prostate tissues as measured by reverse transcription-PCR, in situ hybridization, and immunohistochemistry. Together, our data suggest that TAP not only mediates vitamin E absorption to facilitate vitamin E antiproliferation effect in prostate cancer cells, but also functions like a tumor suppressor gene to control cancer cell viability through a non-vitamin E manner. Therefore, TAP may represent a new prognostic marker for prostate cancer progression.