Browsing by Subject "Photic Stimulation"
Now showing 1 - 20 of 64
- Results Per Page
- Sort Options
Item Open Access A halo visual illusion.(Perception, 1977-01) Rubin, DC; Rebson, DJA visual illusion consisting of transparent halos extending beyond the boundaries of rotating discs is reported. The effect can be obtained by rotating a variety of black-and-white discs at moderate speeds. It is not due solely to rods, as opposed to cones, and does not appear to be explainable in terms of intermittent stimulation of portions of visual fields of fixed visual angle.Item Open Access A neural biomarker of psychological vulnerability to future life stress.(Neuron, 2015-02-04) Swartz, J; Knodt, A; Radtke, S; Hariri, AWe all experience a host of common life stressors such as the death of a family member, medical illness, and financial uncertainty. While most of us are resilient to such stressors, continuing to function normally, for a subset of individuals, experiencing these stressors increases the likelihood of developing treatment-resistant, chronic psychological problems, including depression and anxiety. It is thus paramount to identify predictive markers of risk, particularly those reflecting fundamental biological processes that can be targets for intervention and prevention. Using data from a longitudinal study of 340 healthy young adults, we demonstrate that individual differences in threat-related amygdala reactivity predict psychological vulnerability to life stress occurring as much as 1 to 4 years later. These results highlight a readily assayed biomarker, threat-related amygdala reactivity, which predicts psychological vulnerability to commonly experienced stressors and represents a discrete target for intervention and prevention.Item Open Access A pilot investigation of audiovisual processing and multisensory integration in patients with inherited retinal dystrophies.(BMC ophthalmology, 2017-12-07) Myers, Mark H; Iannaccone, Alessandro; Bidelman, Gavin MIn this study, we examined audiovisual (AV) processing in normal and visually impaired individuals who exhibit partial loss of vision due to inherited retinal dystrophies (IRDs).Two groups were analyzed for this pilot study: Group 1 was composed of IRD participants: two with autosomal dominant retinitis pigmentosa (RP), two with autosomal recessive cone-rod dystrophy (CORD), and two with the related complex disorder, Bardet-Biedl syndrome (BBS); Group 2 was composed of 15 non-IRD participants (controls). Audiovisual looming and receding stimuli (conveying perceptual motion) were used to assess the cortical processing and integration of unimodal (A or V) and multimodal (AV) sensory cues. Electroencephalography (EEG) was used to simultaneously resolve the temporal and spatial characteristics of AV processing and assess differences in neural responses between groups. Measurement of AV integration was accomplished via quantification of the EEG's spectral power and event-related brain potentials (ERPs).Results show that IRD individuals exhibit reduced AV integration for concurrent audio and visual (AV) stimuli but increased brain activity during the unimodal A (but not V) presentation. This was corroborated in behavioral responses, where IRD patients showed slower and less accurate judgments of AV and V stimuli but more accurate responses in the A-alone condition.Collectively, our findings imply a neural compensation from auditory sensory brain areas due to visual deprivation.Item Open Access A polyaxonal amacrine cell population in the primate retina.(The Journal of neuroscience : the official journal of the Society for Neuroscience, 2014-03) Greschner, Martin; Field, Greg D; Li, Peter H; Schiff, Max L; Gauthier, Jeffrey L; Ahn, Daniel; Sher, Alexander; Litke, Alan M; Chichilnisky, EJAmacrine cells are the most diverse and least understood cell class in the retina. Polyaxonal amacrine cells (PACs) are a unique subset identified by multiple long axonal processes. To explore their functional properties, populations of PACs were identified by their distinctive radially propagating spikes in large-scale high-density multielectrode recordings of isolated macaque retina. One group of PACs exhibited stereotyped functional properties and receptive field mosaic organization similar to that of parasol ganglion cells. These PACs had receptive fields coincident with their dendritic fields, but much larger axonal fields, and slow radial spike propagation. They also exhibited ON-OFF light responses, transient response kinetics, sparse and coordinated firing during image transitions, receptive fields with antagonistic surrounds and fine spatial structure, nonlinear spatial summation, and strong homotypic neighbor electrical coupling. These findings reveal the functional organization and collective visual signaling by a distinctive, high-density amacrine cell population.Item Open Access A Refined Neuronal Population Measure of Visual Attention.(PloS one, 2015-01) Mayo, J Patrick; Cohen, Marlene R; Maunsell, John HRNeurophysiological studies of cognitive mechanisms such as visual attention typically ignore trial-by-trial variability and instead report mean differences averaged across many trials. Advances in electrophysiology allow for the simultaneous recording of small populations of neurons, which may obviate the need for averaging activity over trials. We recently introduced a method called the attention axis that uses multi-electrode recordings to provide estimates of attentional state of behaving monkeys on individual trials. Here, we refine this method to eliminate problems that can cause bias in estimates of attentional state in certain scenarios. We demonstrate the sources of these problems using simulations and propose an amendment to the previous formulation that provides superior performance in trial-by-trial assessments of attentional state.Item Open Access Activation of Rod Input in a Model of Retinal Degeneration Reverses Retinal Remodeling and Induces Formation of Functional Synapses and Recovery of Visual Signaling in the Adult Retina.(The Journal of neuroscience : the official journal of the Society for Neuroscience, 2019-08) Wang, Tian; Pahlberg, Johan; Cafaro, Jon; Frederiksen, Rikard; Cooper, AJ; Sampath, Alapakkam P; Field, Greg D; Chen, JeannieA major cause of human blindness is the death of rod photoreceptors. As rods degenerate, synaptic structures between rod and rod bipolar cells disappear and the rod bipolar cells extend their dendrites and occasionally make aberrant contacts. Such changes are broadly observed in blinding disorders caused by photoreceptor cell death and are thought to occur in response to deafferentation. How the remodeled retinal circuit affects visual processing following rod rescue is not known. To address this question, we generated male and female transgenic mice wherein a disrupted cGMP-gated channel (CNG) gene can be repaired at the endogenous locus and at different stages of degeneration by tamoxifen-inducible cre-mediated recombination. In normal rods, light-induced closure of CNG channels leads to hyperpolarization of the cell, reducing neurotransmitter release at the synapse. Similarly, rods lacking CNG channels exhibit a resting membrane potential that was ~10 mV hyperpolarized compared to WT rods, indicating diminished glutamate release. Retinas from these mice undergo stereotypic retinal remodeling as a consequence of rod malfunction and degeneration. Upon tamoxifen-induced expression of CNG channels, rods recovered their structure and exhibited normal light responses. Moreover, we show that the adult mouse retina displays a surprising degree of plasticity upon activation of rod input. Wayward bipolar cell dendrites establish contact with rods to support normal synaptic transmission, which is propagated to the retinal ganglion cells. These findings demonstrate remarkable plasticity extending beyond the developmental period and support efforts to repair or replace defective rods in patients blinded by rod degeneration.SIGNIFICANCE STATEMENT Current strategies for treatment of neurodegenerative disorders are focused on the repair of the primary affected cell type. However, the defective neurons function within a complex neural circuitry, which also becomes degraded during disease. It is not known whether rescued neurons and the remodeled circuit will establish communication to regain normal function. We show that the adult mammalian neural retina exhibits a surprising degree of plasticity following rescue of rod photoreceptors. The wayward dendrites of rod bipolar cells re-establish contact with rods to support normal synaptic transmission, which is propagated to the retinal ganglion cells. These findings support efforts to repair or replace defective rods in patients blinded by rod cell loss.Item Open Access Activity of neurons in monkey globus pallidus during oculomotor behavior compared with that in substantia nigra pars reticulata.(J Neurophysiol, 2010-04) Shin, SooYoon; Sommer, Marc AThe basal ganglia are a subcortical assembly of nuclei involved in many aspects of behavior. Three of the nuclei have high firing rates and inhibitory influences: the substantia nigra pars reticulata (SNr), globus pallidus interna (GPi), and globus pallidus externa (GPe). The SNr contains a wide range of visual, cognitive, and motor signals that have been shown to contribute to saccadic eye movements. Our hypothesis was that GPe and GPi neurons carry similarly diverse signals during saccadic behavior. We recorded from GPe, GPi, and SNr neurons in monkeys that made memory-guided saccades and found that neurons in all three structures had increases or decreases in activity synchronized with saccade generation, visual stimulation, or reward. Comparing GPe neurons with GPi neurons, we found relatively more visual-related activity in GPe and more reward-related activity in GPi. Comparing both pallidal samples with the SNr, we found a greater resemblance between GPe and SNr neurons than that between GPi and SNr neurons. As expected from a known inhibitory projection from GPe to SNr, there was a general reversal of sign in activity modulations between the structures: bursts of activity were relatively more common in GPe and pauses more common in SNr. We analyzed the response fields of neurons in all three structures and found relatively narrow and lateralized fields early in trials (during visual and saccadic events) followed by a broadening later in trials (during reward). Our data reinforce an emerging, new consensus that the GPe and GPi, in addition to the SNr, contribute to oculomotor behavior.Item Open Access Age mediation of frontoparietal activation during visual feature search.(Neuroimage, 2014-11-15) Madden, David J; Parks, Emily L; Davis, Simon W; Diaz, Michele T; Potter, Guy G; Chou, Ying-hui; Chen, Nan-kuei; Cabeza, RobertoActivation of frontal and parietal brain regions is associated with attentional control during visual search. We used fMRI to characterize age-related differences in frontoparietal activation in a highly efficient feature search task, detection of a shape singleton. On half of the trials, a salient distractor (a color singleton) was present in the display. The hypothesis was that frontoparietal activation mediated the relation between age and attentional capture by the salient distractor. Participants were healthy, community-dwelling individuals, 21 younger adults (19-29 years of age) and 21 older adults (60-87 years of age). Top-down attention, in the form of target predictability, was associated with an improvement in search performance that was comparable for younger and older adults. The increase in search reaction time (RT) associated with the salient distractor (attentional capture), standardized to correct for generalized age-related slowing, was greater for older adults than for younger adults. On trials with a color singleton distractor, search RT increased as a function of increasing activation in frontal regions, for both age groups combined, suggesting increased task difficulty. Mediational analyses disconfirmed the hypothesized model, in which frontal activation mediated the age-related increase in attentional capture, but supported an alternative model in which age was a mediator of the relation between frontal activation and capture.Item Open Access Age-related preservation of top-down control over distraction in visual search.(Experimental aging research, 2010-07) Costello, Matthew C; Madden, David J; Shepler, Anne M; Mitroff, Stephen R; Leber, Andrew BVisual search studies have demonstrated that older adults can have preserved or even increased top-down control over distraction. However, the results are mixed as to the extent of this age-related preservation. The present experiment assesses group differences in younger and older adults during visual search, with a task featuring two conditions offering varying degrees of top-down control over distraction. After controlling for generalized slowing, the analyses revealed that the age groups were equally capable of utilizing top-down control to minimize distraction. Furthermore, for both age groups, the distraction effect was manifested in a sustained manner across the reaction time distribution.Item Unknown Anatomical identification of extracellularly recorded cells in large-scale multielectrode recordings.(J Neurosci, 2015-03-18) Li, Peter H; Gauthier, Jeffrey L; Schiff, Max; Sher, Alexander; Ahn, Daniel; Field, Greg D; Greschner, Martin; Callaway, Edward M; Litke, Alan M; Chichilnisky, EJThis study combines for the first time two major approaches to understanding the function and structure of neural circuits: large-scale multielectrode recordings, and confocal imaging of labeled neurons. To achieve this end, we develop a novel approach to the central problem of anatomically identifying recorded cells, based on the electrical image: the spatiotemporal pattern of voltage deflections induced by spikes on a large-scale, high-density multielectrode array. Recordings were performed from identified ganglion cell types in the macaque retina. Anatomical images of cells in the same preparation were obtained using virally transfected fluorescent labeling or by immunolabeling after fixation. The electrical image was then used to locate recorded cell somas, axon initial segments, and axon trajectories, and these signatures were used to identify recorded cells. Comparison of anatomical and physiological measurements permitted visualization and physiological characterization of numerically dominant ganglion cell types with high efficiency in a single preparation.Item Open Access Assessing visual requirements for social context-dependent activation of the songbird song system.(Proc Biol Sci, 2009-01-22) Hara, Erina; Kubikova, Lubica; Hessler, Neal A; Jarvis, Erich DSocial context has been shown to have a profound influence on brain activation in a wide range of vertebrate species. Best studied in songbirds, when males sing undirected song, the level of neural activity and expression of immediate early genes (IEGs) in several song nuclei is dramatically higher or lower than when they sing directed song to other birds, particularly females. This differential social context-dependent activation is independent of auditory input and is not simply dependent on the motor act of singing. These findings suggested that the critical sensory modality driving social context-dependent differences in the brain could be visual cues. Here, we tested this hypothesis by examining IEG activation in song nuclei in hemispheres to which visual input was normal or blocked. We found that covering one eye blocked visually induced IEG expression throughout both contralateral visual pathways of the brain, and reduced activation of the contralateral ventral tegmental area, a non-visual midbrain motivation-related area affected by social context. However, blocking visual input had no effect on the social context-dependent activation of the contralateral song nuclei during female-directed singing. Our findings suggest that individual sensory modalities are not direct driving forces for the social context differences in song nuclei during singing. Rather, these social context differences in brain activation appear to depend more on the general sense that another individual is present.Item Open Access Auditory signals evolve from hybrid- to eye-centered coordinates in the primate superior colliculus.(Journal of neurophysiology, 2012-07) Lee, Jungah; Groh, Jennifer MVisual and auditory spatial signals initially arise in different reference frames. It has been postulated that auditory signals are translated from a head-centered to an eye-centered frame of reference compatible with the visual spatial maps, but, to date, only various forms of hybrid reference frames for sound have been identified. Here, we show that the auditory representation of space in the superior colliculus involves a hybrid reference frame immediately after the sound onset but evolves to become predominantly eye centered, and more similar to the visual representation, by the time of a saccade to that sound. Specifically, during the first 500 ms after the sound onset, auditory response patterns (N = 103) were usually neither head nor eye centered: 64% of neurons showed such a hybrid pattern, whereas 29% were more eye centered and 8% were more head centered. This differed from the pattern observed for visual targets (N = 156): 86% were eye centered, <1% were head centered, and only 13% exhibited a hybrid of both reference frames. For auditory-evoked activity observed within 20 ms of the saccade (N = 154), the proportion of eye-centered response patterns increased to 69%, whereas the hybrid and head-centered response patterns dropped to 30% and <1%, respectively. This pattern approached, although did not quite reach, that observed for saccade-related activity for visual targets: 89% were eye centered, 11% were hybrid, and <1% were head centered (N = 162). The plainly eye-centered visual response patterns and predominantly eye-centered auditory motor response patterns lie in marked contrast to our previous study of the intraparietal cortex, where both visual and auditory sensory and motor-related activity used a predominantly hybrid reference frame (Mullette-Gillman et al. 2005, 2009). Our present findings indicate that auditory signals are ultimately translated into a reference frame roughly similar to that used for vision, but suggest that such signals might emerge only in motor areas responsible for directing gaze to visual and auditory stimuli.Item Open Access Brain activity during episodic retrieval of autobiographical and laboratory events: an fMRI study using a novel photo paradigm.(J Cogn Neurosci, 2004-11) Cabeza, Roberto; Prince, Steve E; Daselaar, Sander M; Greenberg, Daniel L; Budde, Matthew; Dolcos, Florin; LaBar, Kevin S; Rubin, David CFunctional neuroimaging studies of episodic memory retrieval generally measure brain activity while participants remember items encountered in the laboratory ("controlled laboratory condition") or events from their own life ("open autobiographical condition"). Differences in activation between these conditions may reflect differences in retrieval processes, memory remoteness, emotional content, retrieval success, self-referential processing, visual/spatial memory, and recollection. To clarify the nature of these differences, a functional MRI study was conducted using a novel "photo paradigm," which allows greater control over the autobiographical condition, including a measure of retrieval accuracy. Undergraduate students took photos in specified campus locations ("controlled autobiographical condition"), viewed in the laboratory similar photos taken by other participants (controlled laboratory condition), and were then scanned while recognizing the two kinds of photos. Both conditions activated a common episodic memory network that included medial temporal and prefrontal regions. Compared with the controlled laboratory condition, the controlled autobiographical condition elicited greater activity in regions associated with self-referential processing (medial prefrontal cortex), visual/spatial memory (visual and parahippocampal regions), and recollection (hippocampus). The photo paradigm provides a way of investigating the functional neuroanatomy of real-life episodic memory under rigorous experimental control.Item Open Access Configural specificity of the lateral occipital cortex.(Neuropsychologia, 2010-09) Appelbaum, LG; Ales, JM; Cottereau, B; Norcia, AMWhile regions of the lateral occipital cortex (LOC) are known to be selective for objects relative to feature-matched controls, it is not known what set of cues or configurations are used to promote this selectivity. Many theories of perceptual organization have emphasized the figure-ground relationship as being especially important in object-level processing. In the present work we studied the role of perceptual organization in eliciting visual evoked potentials from the object selective LOC. To do this, we used two-region stimuli in which the regions were modulated at different temporal frequencies and were comprised of either symmetric or asymmetric arrangements. The asymmetric arrangement produced an unambiguous figure-ground relationship consistent with a smaller figure region surrounded by a larger background, while four different symmetric arrangements resulted in ambiguous figure-ground relationships but still possessed strong kinetic boundaries between the regions. The surrounded figure-ground arrangement evoked greater activity in the LOC relative to first-tier visual areas (V1-V3). Response selectivity in the LOC, however, was not present for the four different types of symmetric stimuli. These results suggest that kinetic texture boundaries alone are not sufficient to trigger selective processing in the LOC, but that the spatial configuration of a figure that is surrounded by a larger background is both necessary and sufficient to selectively activate the LOC.Item Open Access Correlated firing among major ganglion cell types in primate retina.(The Journal of physiology, 2011-01) Greschner, Martin; Shlens, Jonathon; Bakolitsa, Constantina; Field, Greg D; Gauthier, Jeffrey L; Jepson, Lauren H; Sher, Alexander; Litke, Alan M; Chichilnisky, EJRetinal ganglion cells exhibit substantial correlated firing: a tendency to fire nearly synchronously at rates different from those expected by chance. These correlations suggest that network interactions significantly shape the visual signal transmitted from the eye to the brain. This study describes the degree and structure of correlated firing among the major ganglion cell types in primate retina. Correlated firing among ON and OFF parasol, ON and OFF midget, and small bistratified cells, which together constitute roughly 75% of the input to higher visual areas, was studied using large-scale multi-electrode recordings. Correlated firing in the presence of constant, spatially uniform illumination exhibited characteristic strength, time course and polarity within and across cell types. Pairs of nearby cells with the same light response polarity were positively correlated; cells with the opposite polarity were negatively correlated. The strength of correlated firing declined systematically with distance for each cell type, in proportion to the degree of receptive field overlap. The pattern of correlated firing across cell types was similar at photopic and scotopic light levels, although additional slow correlations were present at scotopic light levels. Similar results were also observed in two other retinal ganglion cell types. Most of these observations are consistent with the hypothesis that shared noise from photoreceptors is the dominant cause of correlated firing. Surprisingly, small bistratified cells, which receive ON input from S cones, fired synchronously with ON parasol and midget cells, which receive ON input primarily from L and M cones. Collectively, these results provide an overview of correlated firing across cell types in the primate retina, and constraints on the underlying mechanisms.Item Open Access Cortical Brain Activity Reflecting Attentional Biasing Toward Reward-Predicting Cues Covaries with Economic Decision-Making Performance.(Cereb Cortex, 2016-01) San Martín, René; Appelbaum, Lawrence G; Huettel, Scott A; Woldorff, Marty GAdaptive choice behavior depends critically on identifying and learning from outcome-predicting cues. We hypothesized that attention may be preferentially directed toward certain outcome-predicting cues. We studied this possibility by analyzing event-related potential (ERP) responses in humans during a probabilistic decision-making task. Participants viewed pairs of outcome-predicting visual cues and then chose to wager either a small (i.e., loss-minimizing) or large (i.e., gain-maximizing) amount of money. The cues were bilaterally presented, which allowed us to extract the relative neural responses to each cue by using a contralateral-versus-ipsilateral ERP contrast. We found an early lateralized ERP response, whose features matched the attention-shift-related N2pc component and whose amplitude scaled with the learned reward-predicting value of the cues as predicted by an attention-for-reward model. Consistently, we found a double dissociation involving the N2pc. Across participants, gain-maximization positively correlated with the N2pc amplitude to the most reliable gain-predicting cue, suggesting an attentional bias toward such cues. Conversely, loss-minimization was negatively correlated with the N2pc amplitude to the most reliable loss-predicting cue, suggesting an attentional avoidance toward such stimuli. These results indicate that learned stimulus-reward associations can influence rapid attention allocation, and that differences in this process are associated with individual differences in economic decision-making performance.Item Open Access Cortical dynamics during naturalistic sensory stimulations: experiments and models.(Journal of physiology, Paris, 2011-01) Mazzoni, Alberto; Brunel, Nicolas; Cavallari, Stefano; Logothetis, Nikos K; Panzeri, StefanoWe report the results of our experimental and theoretical investigations of the neural response dynamics in primary visual cortex (V1) during naturalistic visual stimulation. We recorded Local Field Potentials (LFPs) and spiking activity from V1 of anaesthetized macaques during binocular presentation of Hollywood color movies. We analyzed these recordings with information theoretic methods, and found that visual information was encoded mainly by two bands of LFP responses: the network fluctuations measured by the phase and power of low-frequency (less than 12 Hz) LFPs; and fast gamma-range (50-100 Hz) oscillations. Both the power and phase of low frequency LFPs carried information largely complementary to that carried by spikes, whereas gamma range oscillations carried information largely redundant to that of spikes. To interpret these results within a quantitative theoretical framework, we then simulated a sparsely connected recurrent network of excitatory and inhibitory neurons receiving slowly varying naturalistic inputs, and we determined how the LFPs generated by the network encoded information about the inputs. We found that this simulated recurrent network reproduced well the experimentally observed dependency of LFP information upon frequency. This network encoded the overall strength of the input into the power of gamma-range oscillations generated by inhibitory-excitatory neural interactions, and encoded slow variations in the input by entraining the network LFP at the corresponding frequency. This dynamical behavior accounted quantitatively for the independent information carried by high and low frequency LFPs, and for the experimentally observed cross-frequency coupling between phase of slow LFPs and the power of gamma LFPs. We also present new results showing that the model's dynamics also accounted for the extra visual information that the low-frequency LFP phase of spike firing carries beyond that carried by spike rates. Overall, our results suggest biological mechanisms by which cortex can multiplex information about naturalistic sensory environments.Item Open Access Cross-hemispheric collaboration and segregation associated with task difficulty as revealed by structural and functional connectivity.(J Neurosci, 2015-05-27) Davis, Simon W; Cabeza, RobertoAlthough it is known that brain regions in one hemisphere may interact very closely with their corresponding contralateral regions (collaboration) or operate relatively independent of them (segregation), the specific brain regions (where) and conditions (how) associated with collaboration or segregation are largely unknown. We investigated these issues using a split field-matching task in which participants matched the meaning of words or the visual features of faces presented to the same (unilateral) or to different (bilateral) visual fields. Matching difficulty was manipulated by varying the semantic similarity of words or the visual similarity of faces. We assessed the white matter using the fractional anisotropy (FA) measure provided by diffusion tensor imaging (DTI) and cross-hemispheric communication in terms of fMRI-based connectivity between homotopic pairs of cortical regions. For both perceptual and semantic matching, bilateral trials became faster than unilateral trials as difficulty increased (bilateral processing advantage, BPA). The study yielded three novel findings. First, whereas FA in anterior corpus callosum (genu) correlated with word-matching BPA, FA in posterior corpus callosum (splenium-occipital) correlated with face-matching BPA. Second, as matching difficulty intensified, cross-hemispheric functional connectivity (CFC) increased in domain-general frontopolar cortex (for both word and face matching) but decreased in domain-specific ventral temporal lobe regions (temporal pole for word matching and fusiform gyrus for face matching). Last, a mediation analysis linking DTI and fMRI data showed that CFC mediated the effect of callosal FA on BPA. These findings clarify the mechanisms by which the hemispheres interact to perform complex cognitive tasks.Item Open Access Cross-modal stimulus conflict: the behavioral effects of stimulus input timing in a visual-auditory Stroop task.(PLoS One, 2013) Donohue, Sarah E; Appelbaum, Lawrence G; Park, Christina J; Roberts, Kenneth C; Woldorff, Marty GCross-modal processing depends strongly on the compatibility between different sensory inputs, the relative timing of their arrival to brain processing components, and on how attention is allocated. In this behavioral study, we employed a cross-modal audio-visual Stroop task in which we manipulated the within-trial stimulus-onset-asynchronies (SOAs) of the stimulus-component inputs, the grouping of the SOAs (blocked vs. random), the attended modality (auditory or visual), and the congruency of the Stroop color-word stimuli (congruent, incongruent, neutral) to assess how these factors interact within a multisensory context. One main result was that visual distractors produced larger incongruency effects on auditory targets than vice versa. Moreover, as revealed by both overall shorter response times (RTs) and relative shifts in the psychometric incongruency-effect functions, visual-information processing was faster and produced stronger and longer-lasting incongruency effects than did auditory. When attending to either modality, stimulus incongruency from the other modality interacted with SOA, yielding larger effects when the irrelevant distractor occurred prior to the attended target, but no interaction with SOA grouping. Finally, relative to neutral-stimuli, and across the wide range of the SOAs employed, congruency led to substantially more behavioral facilitation than did incongruency to interference, in contrast to findings that within-modality stimulus-compatibility effects tend to be more evenly split between facilitation and interference. In sum, the present findings reveal several key characteristics of how we process the stimulus compatibility of cross-modal sensory inputs, reflecting stimulus processing patterns that are critical for successfully navigating our complex multisensory world.Item Open Access Differential Mnemonic Contributions of Cortical Representations during Encoding and Retrieval.(Journal of cognitive neuroscience, 2024-10) Howard, Cortney M; Huang, Shenyang; Hovhannisyan, Mariam; Cabeza, Roberto; Davis, Simon WSeveral recent fMRI studies of episodic and working memory representations converge on the finding that visual information is most strongly represented in occipito-temporal cortex during the encoding phase but in parietal regions during the retrieval phase. It has been suggested that this location shift reflects a change in the content of representations, from predominantly visual during encoding to primarily semantic during retrieval. Yet, direct evidence on the nature of encoding and retrieval representations is lacking. It is also unclear how the representations mediating the encoding-retrieval shift contribute to memory performance. To investigate these two issues, in the current fMRI study, participants encoded pictures (e.g., picture of a cardinal) and later performed a word recognition test (e.g., word "cardinal"). Representational similarity analyses examined how visual (e.g., red color) and semantic representations (e.g., what cardinals eat) support successful encoding and retrieval. These analyses revealed two novel findings. First, successful memory was associated with representational changes in cortical location (from occipito-temporal at encoding to parietal at retrieval) but not with changes in representational content (visual vs. semantic). Thus, the representational encoding-retrieval shift cannot be easily attributed to a change in the nature of representations. Second, in parietal regions, stronger representations predicted encoding failure but retrieval success. This encoding-retrieval "flip" in representations mimics the one previously reported in univariate activation studies. In summary, by answering important questions regarding the content and contributions to the performance of the representations mediating the encoding-retrieval shift, our findings clarify the neural mechanisms of this intriguing phenomenon.