Browsing by Subject "Physics, Nuclear"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Compton scattering from He 4 at the TUNL HIγ S facility(Physical Review C, 2020-03-01) Li, X; Ahmed, MW; Banu, A; Bartram, C; Crowe, B; Downie, EJ; Emamian, M; Feldman, G; Gao, H; Godagama, D; Grießhammer, HW; Howell, CR; Karwowski, HJ; Kendellen, DP; Kovash, MA; Leung, KKH; Markoff, D; Mikhailov, S; Pywell, RE; Sikora, MH; Silano, JA; Sosa, RS; Spraker, MC; Swift, G; Wallace, P; Weller, HR; Whisnant, CS; Wu, YK; Zhao, ZW© 2020 American Physical Society. Differential cross sections for elastic Compton scattering from He4 have been measured with high statistical precision at the High Intensity γ-ray Source at laboratory scattering angles of 55°, 90°, and 125° using a quasi-monoenergetic photon beam with a weighted mean energy value of 81.3 MeV. The results are compared to previous measurements and similar fore-aft asymmetry in the angular distribution of the differential cross sections is observed. This experimental work is expected to strongly motivate the development of effective-field-theory calculations of Compton scattering from He4 to fully interpret the data.Item Open Access Electron-Ion Collider: The next QCD frontier: Understanding the glue that binds us all(European Physical Journal A, 2016-09-01) Accardi, A; Albacete, JL; Anselmino, M; Armesto, N; Aschenauer, EC; Bacchetta, A; Boer, D; Brooks, WK; Burton, T; Chang, NB; Deng, WT; Deshpande, A; Diehl, M; Dumitru, A; Dupré, R; Ent, R; Fazio, S; Gao, H; Guzey, V; Hakobyan, H; Hao, Y; Hasch, D; Holt, R; Horn, T; Huang, M; Hutton, A; Hyde, C; Jalilian-Marian, J; Klein, S; Kopeliovich, B; Kovchegov, Y; Kumar, K; Kumerički, K; Lamont, MAC; Lappi, T; Lee, JH; Lee, Y; Levin, EM; Lin, FL; Litvinenko, V; Ludlam, TW; Marquet, C; Meziani, ZE; McKeown, R; Metz, A; Milner, R; Morozov, VS; Mueller, AH; Müller, B; Müller, D; Nadel-Turonski, P; Paukkunen, H; Prokudin, A; Ptitsyn, V; Qian, X; Qiu, JW; Ramsey-Musolf, M; Roser, T; Sabatié, F; Sassot, R; Schnell, G; Schweitzer, P; Sichtermann, E; Stratmann, M; Strikman, M; Sullivan, M; Taneja, S; Toll, T; Trbojevic, D; Ullrich, T; Venugopalan, R; Vigdor, S; Vogelsang, W; Weiss, C; Xiao, BW; Yuan, F; Zhang, YH; Zheng, L© 2016, The Author(s). This White Paper presents the science case of an Electron-Ion Collider (EIC), focused on the structure and interactions of gluon-dominated matter, with the intent to articulate it to the broader nuclear science community. It was commissioned by the managements of Brookhaven National Laboratory (BNL) and Thomas Jefferson National Accelerator Facility (JLab) with the objective of presenting a summary of scientific opportunities and goals of the EIC as a follow-up to the 2007 NSAC Long Range plan. This document is a culmination of a community-wide effort in nuclear science following a series of workshops on EIC physics over the past decades and, in particular, the focused ten-week program on “Gluons and quark sea at high energies” at the Institute for Nuclear Theory in Fall 2010. It contains a brief description of a few golden physics measurements along with accelerator and detector concepts required to achieve them. It has been benefited profoundly from inputs by the users’ communities of BNL and JLab. This White Paper offers the promise to propel the QCD science program in the US, established with the CEBAF accelerator at JLab and the RHIC collider at BNL, to the next QCD frontier.