Browsing by Subject "Platyrrhini"
Now showing 1 - 16 of 16
Results Per Page
Sort Options
Item Open Access A New Humerus of Homunculus patagonicus, a Stem Platyrrhine from the Santa Cruz Formation (Late Early Miocene), Santa Cruz Province, Argentina(Ameghiniana, 2022-01-01) Fleagle, JG; Gladman, JT; Kay, RFWe describe a well-preserved humerus of Homunculus patagonicus, a stem platyrrhine from the late early Miocene of the Santa Cruz Formation, Santa Cruz Province, Argentina. The distal part of a humerus was collected by Carlos Ameghino and figured in the 19thCentury, but is now lost. Other described postcranial elements, also collected by him include a femur and a partial radius. Comparative observations are made with living and extinct platyrrhines, Oligocene African anthropoids, and extant strepsirrhines. Homunculus patagonicus was a robustly built arboreal quadruped that weighed between 2.2 and 2.6 kg. There is no evidence that the elbow could be fully extended as in living suspensory platyrrhines like Ateles. The medial orientation of the epicondyle suggests that the finger and wrist flexors were not aligned with the long axis of the limb, a distinction from more cursorial monkeys (extant cercopithecoids and the Cuban Pleistocene fossil platyrrhine Paralouatta have retroflexed medial epicondyles). Overall, the morphology is typically platyrrhine although the bone is quite robust. The robustness of the humerus is most comparable to that of early anthropoids from Africa rather than any extant platyrrhine.Item Open Access Anthropology. New World monkey origins.(Science, 2015-03-06) Kay, Richard FrederickItem Open Access Are we looking for loads in all the right places? New research directions for studying the masticatory apparatus of New World monkeys.(Anat Rec (Hoboken), 2011-12) Vinyard, CJ; Taylor, AB; Teaford, MF; Glander, KE; Ravosa, MJ; Rossie, JB; Ryan, TM; Williams, SHNew World monkeys display a wide range of masticatory apparatus morphologies related to their diverse diets and feeding strategies. While primatologists have completed many studies of the platyrrhine masticatory apparatus, particularly morphometric analyses, we collectively acknowledge key shortcomings in our understanding of the function and evolution of the platyrrhine feeding apparatus. Our goal in this contribution is to review several recent, and in most cases ongoing, efforts to address some of the deficits in our knowledge of how the platyrrhine skull is loaded during feeding. We specifically consider three broad research areas: (1) in vivo physiological studies documenting mandibular bone strains during feeding, (2) metric analyses assessing musculoskeletal functional morphology and performance, as well as (3) the initiation of a physiological ecology of feeding that measures in vivo masticatory mechanics in a natural environment. We draw several conclusions from these brief reviews. First, we need better documentation of in vivo strain patterns in the platyrrhine skull during feeding given their empirical role in developing adaptive hypotheses explaining masticatory apparatus form. Second, the greater accuracy of new technologies, such as CT scanning, will allow us to better describe the functional consequences of jaw form. Third, performance studies are generally lacking for platyrrhine jaws, muscles, and teeth and offer exciting avenues for linking form to feeding behavior and diet. Finally, attempts to bridge distinct research agendas, such as collecting in vivo physiological data during feeding in natural environments, present some of the greatest opportunities for novel insights into platyrrhine feeding biology.Item Open Access Auditory morphology and hearing sensitivity in fossil New World monkeys.(Anatomical record (Hoboken, N.J. : 2007), 2010-10) Coleman, M; Kay, RF; Colbert, MWIn recent years it has become possible to investigate the hearing capabilities in fossils by analogy with studies in living taxa that correlate the bony morphology of the auditory system with hearing sensitivity. In this analysis, we used a jack-knife procedure to test the accuracy of one such study that examined the functional morphology of the primate auditory system and we found that low-frequency hearing (sound pressure level at 250 Hz) can be predicted with relatively high confidence (±3-8 dB depending on the structure). Based on these functional relationships, we then used high-resolution computed tomography to examine the auditory region of three fossil New World monkeys (Homunculus, Dolicocebus, and Tremacebus) and compared their morphology and predicted low-frequency sensitivity with a phylogenetically diverse sample of extant primates. These comparisons reveal that these extinct taxa shared many auditory characteristics with living platyrrhines. However, the fossil with the best preserved auditory region (Homunculus) also displayed a few unique features such as the relative size of the tympanic membrane and stapedial footplate and the degree of trabeculation of the anterior accessory cavity. Still, the majority of evidence suggests that these fossil species likely had similar low-frequency sensitivity to extant South American monkeys. This research adds to the small but growing body of evidence on the evolution of hearing abilities in extinct taxa and lays the groundwork for predicting hearing sensitivity in additional fossil primate specimens.Item Open Access Biogeography in deep time - What do phylogenetics, geology, and paleoclimate tell us about early platyrrhine evolution?(Mol Phylogenet Evol, 2015-01) Kay, Richard FrederickMolecular data have converged on a consensus about the genus-level phylogeny of extant platyrrhine monkeys, but for most extinct taxa and certainly for those older than the Pleistocene we must rely upon morphological evidence from fossils. This raises the question as to how well anatomical data mirror molecular phylogenies and how best to deal with discrepancies between the molecular and morphological data as we seek to extend our phylogenies to the placement of fossil taxa. Here I present parsimony-based phylogenetic analyses of extant and fossil platyrrhines based on an anatomical dataset of 399 dental characters and osteological features of the cranium and postcranium. I sample 16 extant taxa (one from each platyrrhine genus) and 20 extinct taxa of platyrrhines. The tree structure is constrained with a "molecular scaffold" of extant species as implemented in maximum parsimony using PAUP with the molecular-based 'backbone' approach. The data set encompasses most of the known extinct species of platyrrhines, ranging in age from latest Oligocene (∼26 Ma) to the Recent. The tree is rooted with extant catarrhines, and Late Eocene and Early Oligocene African anthropoids. Among the more interesting patterns to emerge are: (1) known early platyrrhines from the Late Oligocene through Early Miocene (26-16.5Ma) represent only stem platyrrhine taxa; (2) representatives of the three living platyrrhine families first occur between 15.7 Ma and 13.5 Ma; and (3) recently extinct primates from the Greater Antilles (Cuba, Jamaica, Hispaniola) are sister to the clade of extant platyrrhines and may have diverged in the Early Miocene. It is probable that the crown platyrrhine clade did not originate before about 20-24 Ma, a conclusion consistent with the phylogenetic analysis of fossil taxa presented here and with recent molecular clock estimates. The following biogeographic scenario is consistent with the phylogenetic findings and climatic and geologic evidence: Tropical South America has been a center for platyrrhine diversification since platyrrhines arrived on the continent in the middle Cenozoic. Platyrrhines dispersed from tropical South America to Patagonia at ∼25-24 Ma via a "Paraná Portal" through eastern South America across a retreating Paranense Sea. Phylogenetic bracketing suggests Antillean primates arrived via a sweepstakes route or island chain from northern South America in the Early Miocene, not via a proposed land bridge or island chain (GAARlandia) in the Early Oligocene (∼34 Ma). Patagonian and Antillean platyrrhines went extinct without leaving living descendants, the former at the end of the Early Miocene and the latter within the past six thousand years. Molecular evidence suggests crown platyrrhines arrived in Central America by crossing an intermittent connection through the Isthmus of Panama at or after 3.5Ma. Any more ancient Central American primates, should they be discovered, are unlikely to have given rise to the extant Central American taxa in situ.Item Open Access Dental topographic change with macrowear and dietary inference in Homunculus patagonicus.(Journal of human evolution, 2020-07) Li, Peishu; Morse, Paul E; Kay, Richard FHomunculus patagonicus is a stem platyrrhine from the late Early Miocene, high-latitude Santa Cruz Formation, Argentina. Its distribution lies farther south than any extant platyrrhine species. Prior studies on the dietary specialization of Homunculus suggest either a mixed diet of fruit and leaves or a more predominantly fruit-eating diet. To gain further insight into the diet of Homunculus, we examined how the occlusal surfaces of the first and second lower molars of Homunculus change with wear by using three homology-free dental topographic measures: Dirichlet normal energy (DNE), orientation patch count rotated (OPCR), and relief index (RFI). We compared these data with wear series of three extant platyrrhine taxa: the folivorous Alouatta, and the frugivorous Ateles and Callicebus (titi monkeys now in the genus Plecturocebus). Previous studies found Alouatta and Ateles exhibit distinctive patterns of change in occlusal morphology with macrowear, possibly related to the more folivorous diet of the former. Based on previous suggestions that Homunculus was at least partially folivorous, we predicted that changes in dental topographic metrics with wear would follow a pattern more similar to that seen in Alouatta than in Ateles or Callicebus. However, wear-induced changes in Homunculus crown sharpness (DNE) and complexity (OPCR) are more similar to the pattern observed in the frugivorous Ateles and Callicebus. Based on similar wear modalities of the lower molars between Homunculus and Callicebus, we infer that Homunculus had a primarily frugivorous diet. Leaves may have provided an alternative dietary resource to accommodate fluctuation in seasonal fruiting abundance in the high-latitude extratropical environment of late Early Miocene Patagonia.Item Open Access Dietary inference from upper and lower molar morphology in platyrrhine primates.(PLoS One, 2015) Allen, Kari L; Cooke, Siobhán B; Gonzales, Lauren A; Kay, Richard FThe correlation between diet and dental topography is of importance to paleontologists seeking to diagnose ecological adaptations in extinct taxa. Although the subject is well represented in the literature, few studies directly compare methods or evaluate dietary signals conveyed by both upper and lower molars. Here, we address this gap in our knowledge by comparing the efficacy of three measures of functional morphology for classifying an ecologically diverse sample of thirteen medium- to large-bodied platyrrhines by diet category (e.g., folivore, frugivore, hard object feeder). We used Shearing Quotient (SQ), an index derived from linear measurements of molar cutting edges and two indices of crown surface topography, Occlusal Relief (OR) and Relief Index (RFI). Using SQ, OR, and RFI, individuals were then classified by dietary category using Discriminate Function Analysis. Both upper and lower molar variables produce high classification rates in assigning individuals to diet categories, but lower molars are consistently more successful. SQs yield the highest classification rates. RFI and OR generally perform above chance. Upper molar RFI has a success rate below the level of chance. Adding molar length enhances the discriminatory power for all variables. We conclude that upper molar SQs are useful for dietary reconstruction, especially when combined with body size information. Additionally, we find that among our sample of platyrrhines, SQ remains the strongest predictor of diet, while RFI is less useful at signaling dietary differences in absence of body size information. The study demonstrates new ways for inferring the diets of extinct platyrrhine primates when both upper and lower molars are available, or, for taxa known only from upper molars. The techniques are useful in reconstructing diet in stem representatives of anthropoid clade, who share key aspects of molar morphology with extant platyrrhines.Item Open Access Dietary quality and encephalization in platyrrhine primates.(Proc Biol Sci, 2012-02-22) Allen, Kari L; Kay, Richard FThe high energetic costs of building and maintaining large brains are thought to constrain encephalization. The 'expensive-tissue hypothesis' (ETH) proposes that primates (especially humans) overcame this constraint through reduction of another metabolically expensive tissue, the gastrointestinal tract. Small guts characterize animals specializing on easily digestible diets. Thus, the hypothesis may be tested via the relationship between brain size and diet quality. Platyrrhine primates present an interesting test case, as they are more variably encephalized than other extant primate clades (excluding Hominoidea). We find a high degree of phylogenetic signal in the data for diet quality, endocranial volume and body size. Controlling for phylogenetic effects, we find no significant correlation between relative diet quality and relative endocranial volume. Thus, diet quality fails to account for differences in platyrrhine encephalization. One taxon, in particular, Brachyteles, violates predictions made by ETH in having a large brain and low-quality diet. Dietary reconstructions of stem platyrrhines further indicate that a relatively high-quality diet was probably in place prior to increases in encephalization. Therefore, it is unlikely that a shift in diet quality was a primary constraint release for encephalization in platyrrhines and, by extrapolation, humans.Item Open Access Dust in the wind: How climate variables and volcanic dust affect rates of tooth wear in Central American howling monkeys.(Am J Phys Anthropol, 2016-02) Spradley, Jackson P; Glander, Kenneth E; Kay, Richard FOBJECTIVES: Two factors have been considered important contributors to tooth wear: dietary abrasives in plant foods themselves and mineral particles adhering to ingested food. Each factor limits the functional life of teeth. Cross-population studies of wear rates in a single species living in different habitats may point to the relative contributions of each factor. MATERIALS AND METHODS: We examine macroscopic dental wear in populations of Alouatta palliata (Gray, 1849) from Costa Rica (115 specimens), Panama (19), and Nicaragua (56). The sites differ in mean annual precipitation, with the Panamanian sites receiving more than twice the precipitation of those in Costa Rica or Nicaragua (∼3,500 mm vs. ∼1,500 mm). Additionally, many of the Nicaraguan specimens were collected downwind of active plinian volcanoes. Molar wear is expressed as the ratio of exposed dentin area to tooth area; premolar wear was scored using a ranking system. RESULTS: Despite substantial variation in environmental variables and the added presence of ash in some environments, molar wear rates do not differ significantly among the populations. Premolar wear, however, is greater in individuals collected downwind from active volcanoes compared with those living in environments that did not experience ash-fall. DISCUSSION: Volcanic ash seems to be an important contributor to anterior tooth wear but less so in molar wear. That wear is not found uniformly across the tooth row may be related to malformation in the premolars due to fluorosis. A surge of fluoride accompanying the volcanic ash may differentially affect the premolars as the molars fully mineralize early in the life of Alouatta.Item Open Access Oldest known cranium of a juvenile New World monkey (Early Miocene, Patagonia, Argentina): implications for the taxonomy and the molar eruption pattern of early platyrrhines.(J Hum Evol, 2014-09) Perry, Jonathan MG; Kay, Richard F; Vizcaíno, Sergio F; Bargo, M SusanaA juvenile cranium of Homunculus patagonicus Ameghino, 1891a from the late Early Miocene of Santa Cruz Province (Argentina) provides the first evidence of developing cranial anatomy for any fossil platyrrhine. The specimen preserves the rostral part of the cranium with deciduous and permanent alveoli and teeth. The dental eruption sequence in the new specimen and a reassessment of eruption patterns in living and fossil platyrrhines suggest that the ancestral platyrrhine pattern of tooth replacement was for the permanent incisors to erupt before M(1), not an accelerated molar eruption (before the incisors) as recently proposed. Two genera and species of Santacrucian monkeys are now generally recognized: H. patagonicus Ameghino, 1891a and Killikaike blakei Tejedor et al., 2006. Taxonomic allocation of Santacrucian monkeys to these species encounters two obstacles: 1) the (now lost) holotype and a recently proposed neotype of H. patagonicus are mandibles from different localities and different geologic members of the Santa Cruz Formation, separated by approximately 0.7 million years, whereas the holotype of K. blakei is a rostral part of a cranium without a mandible; 2) no Santacrucian monkey with associated cranium and mandible has ever been found. Bearing in mind these uncertainties, our examination of the new specimen as well as other cranial specimens of Santacrucian monkeys establishes the overall dental and cranial similarity between the holotype of Killikaike blakei, adult cranial material previously referred to H. patagonicus, and the new juvenile specimen. This leads us to conclude that Killikaike blakei is a junior subjective synonym of H. patagonicus.Item Open Access Parvimico materdei gen. et sp. nov.: A new platyrrhine from the Early Miocene of the Amazon Basin, Peru.(Journal of human evolution, 2019-09) Kay, Richard F; Gonzales, Lauren A; Salenbien, Wout; Martinez, Jean-Noël; Cooke, Siobhán B; Valdivia, Luis Angel; Rigsby, Catherine; Baker, Paul AThree field seasons of exploration along the Río Alto Madre de Dios in Peruvian Amazonia have yielded a fauna of micromammals from a new locality AMD-45, at ∼12.8°S. So far we have identified the new primate described here as well as small caviomorph rodents, cenolestoid marsupials, interatheriid notoungulates, xenarthrans, fish, lizards and invertebrates. The site is in the Bala Formation as exposed where the river transects a syncline. U-Pb dates on detrital zircons constrain the locality's age at between 17.1 ± 0.7 Ma and 18.9 ± 0.7 Ma, making the fauna age-equivalent to that from the Pinturas Formation and the older parts of the Santa Cruz Formation of Patagonian Argentina (Santacrucian). The primate specimen is an unworn M1 of exceptionally small size (equivalent in size to the extant callitrichine, Callithrix jacchus, among the smallest living platyrrhines and the smallest Eocene-Early Miocene platyrrhine yet recorded). Despite its small size it is unlike extant callitrichines in having a prominent cingulum hypocone. Based on the moderate development of the buccal crests, this animal likely had a diet similar to that of frugivorous callitrichines, and distinctly different from the more similarly-sized gummivores, Cebuella and C. jacchus. The phyletic position of the new taxon is uncertain, especially given the autapomorphic character of the tooth as a whole. Nevertheless, its unusual morphology hints at a wholly original and hitherto unknown Amazonian fauna, and reinforces the impression of the geographic separation of the Amazonian tropics from the more geographically isolated southerly parts of the continent in Early Miocene times.Item Open Access Stem members of Platyrrhini are distinct from catarrhines in at least one derived cranial feature.(Journal of human evolution, 2016-11) Fulwood, Ethan L; Boyer, Doug M; Kay, Richard FThe pterion, on the lateral aspect of the cranium, is where the zygomatic, frontal, sphenoid, squamosal, and parietal bones approach and contact. The configuration of these bones distinguishes New and Old World anthropoids: most extant platyrrhines exhibit contact between the parietal and zygomatic bones, while all known catarrhines exhibit frontal-alisphenoid contact. However, it is thought that early stem-platyrrhines retained the apparently primitive catarrhine condition. Here we re-evaluate the condition of key fossil taxa using μCT (micro-computed tomography) imaging. The single known specimen of Tremacebus and an adult cranium of Antillothrix exhibit the typical platyrrhine condition of parietal-zygomatic contact. The same is true of one specimen of Homunculus, while a second specimen has the 'catarrhine' condition. When these new data are incorporated into an ancestral state reconstruction, they support the conclusion that pterion frontal-alisphenoid contact characterized the last common ancestor of crown anthropoids and that contact between the parietal and zygomatic is a synapomorphy of Platyrrhini.Item Open Access Stem taxa, homoplasy, long lineages, and the phylogenetic position of Dolichocebus(Journal of Human Evolution, 2010-08) Kay, RF; Fleagle, JGItem Open Access The effect of differences in methodology among some recent applications of shearing quotients.(Am J Phys Anthropol, 2015-01) Boyer, Doug M; Winchester, Julia; Kay, Richard FA shearing quotient (SQ) is a way of quantitatively representing the Phase I shearing edges on a molar tooth. Ordinary or phylogenetic least squares regression is fit to data on log molar length (independent variable) and log sum of measured shearing crests (dependent variable). The derived linear equation is used to generate an 'expected' shearing crest length from molar length of included individuals or taxa. Following conversion of all variables to real space, the expected value is subtracted from the observed value for each individual or taxon. The result is then divided by the expected value and multiplied by 100. SQs have long been the metric of choice for assessing dietary adaptations in fossil primates. Not all studies using SQ have used the same tooth position or crests, nor have all computed regression equations using the same approach. Here we focus on re-analyzing the data of one recent study to investigate the magnitude of effects of variation in 1) shearing crest inclusion, and 2) details of the regression setup. We assess the significance of these effects by the degree to which they improve or degrade the association between computed SQs and diet categories. Though altering regression parameters for SQ calculation has a visible effect on plots, numerous iterations of statistical analyses vary surprisingly little in the success of the resulting variables for assigning taxa to dietary preference. This is promising for the comparability of patterns (if not casewise values) in SQ between studies. We suggest that differences in apparent dietary fidelity of recent studies are attributable principally to tooth position examined.Item Open Access Tooth Root Size, Chewing Muscle Leverage, and the Biology of Homunculus patagonicus (Primates) from the Late Early Miocene of Patagonia(Ameghiniana, 2010-09) Perry, JMG; Kay, RF; Vizcaíno, SF; Bargo, MSInferences about the diet of Miocene platyrrhine monkeys have relied upon the morphology of the molar teeth, specifically the crests on the molars. Using a library of Micro-CT images of a broad comparative sample of living platyrrhines (callitrichines, cebines, pitheciids and atelids), late early Miocene Homunculus, and the early Miocene Tremacebus and Dolichocebus, we extend these inferences by examining the surface areas of the tooth roots, anchor points for the periodontal ligaments. From muscle scars on the skull, we estimate the mechanical leverage of the chewing muscles at bite points from the canine to the last molar. Extant platyrrhines that gouge bark to obtain exudates do not have especially large canine roots or anterior premolar roots compared with their less specialized close relatives. Extant platyrrhines that have more folivorous diets have much larger molar roots than do similar-sized more frugivorous species. Homunculus patagonicus has large postcanine roots relative to body size and poor masticatory leverage compared to the extant platyrrhines in our sample. The large postcanine roots, heavy tooth wear, and moderately-long shearing crests suggests a diet of abrasive, resistant foods. However, relatively poor jaw adductor leverage would have put the masticatory apparatus of Homunculus at a mechanical disadvantage for producing high bite forces compared to the condition in extant platyrrhines. Tremacebus and Dolichocebus, like Homunculus, have larger tooth root surfaces than comparable-sized living platyrrhines. They also resemble Homunculus in being more prognathic and having posteriorly-located temporalis origins - all features of a relatively poor leverage system. ©Asociación Paleontológica Argentina.Item Open Access Unique nasal turbinal morphology reveals Homunculus patagonicus functionally converged on modern platyrrhine olfactory sensitivity.(Journal of human evolution, 2022-04-21) Lundeen, Ingrid K; Kay, Richard FThe phyletic position of early Miocene platyrrhine Homunculus patagonicus is currently a matter of debate. Some regard it to be an early member of the Pitheciidae, represented today by the sakis, uakaris, and titi monkeys. Others view Homunculus as a stem platyrrhine, part of a group that diversified in Patagonia and converged in some respects on modern pitheciine dental and gnathic morphology and perhaps seed-eating specialization. New details of its internal nasal anatomy are pertinent to resolving this debate. In addition, they provide a new perspective on how modern platyrrhine olfactory sensitivity evolved. Here we reconstruct the internal nasal anatomy of Homunculus from high-resolution computed tomography scans. This species has three ethmoturbinals, the scrolls of bone in the nasal fossa that were covered in sensory epithelium in vivo. This condition stands in stark contrast to extant platyrrhines, and indeed to all other haplorhines, which have only two ethmoturbinals or, in the case of all pitheciid platyrrhines, only one ethmoturbinal. Quantitatively, however, Homunculus has an olfactory turbinal surface area that falls within the modern platyrrhine distribution, suggesting that while turbinal numbers differ, olfactory sensitivity in this taxon was likely comparable to that of modern platyrrhines. These new data from the fossil record provide further support for the hypothesis that Homunculus is a stem platyrrhine that functionally converged on modern platyrrhines rather than being an early representative of any extant clade.