Browsing by Subject "Point Mutation"
Now showing 1 - 7 of 7
- Results Per Page
- Sort Options
Item Open Access Allosteric effects of external K+ ions mediated by the aspartate of the GYGD signature sequence in the Kv2.1 K+ channel.(Pflugers Archiv : European journal of physiology, 2006-03) Chapman, Mark L; Blanke, Marie L; Krovetz, Howard S; VanDongen, Antonius MJK+ channels achieve exquisite ion selectivity without jeopardizing efficient permeation by employing multiple, interacting K+-binding sites. Introduction ofa cadmium (Cd2+)-binding site in the external vestibule of Kv2.1 (drk1), allowed us to functionally characterize a binding site for external monovalent cations. Permeant ions displayed higher affinity for this site than non-permeant monovalent cations, although the selectivity profile was different from that of the channel. Point mutations identified the highly conserved aspartate residue immediately following the selectivity filter as a critical determinant of the antagonism between external K+ and Cd2+ ions. A conservative mutation at this position (D378E) significantly affected the open-state stability. Moreover, the mean open time was found to be modulated by external K+ concentration, suggesting a coupling between channel closing and the permeation process. Reducing the Rb+ conductance by mutating the selectivity filter to the sequence found inKv4.1, also significantly reduced the effectiveness ofRb+ ions to antagonize Cd2+ inhibition, thereby implicating the selectivity filter as the site at which K+ions exert their antagonistic effect on Cd2+ block. The equivalent of D378 in KcsA, D80, takes part in an inter-subunit hydrogen-bond network that allows D80to functionally interact with the selectivity filter. The results suggest that external K+ ions antagonize Cd2+inhibition (in I379C) and modulate the mean open time(in the wild-type Kv2.1) by altering the occupancy profile of the K+-binding sites in the selectivity filter.Item Open Access Isocitrate dehydrogenase mutations in gliomas: mechanisms, biomarkers and therapeutic target.(Current opinion in neurology, 2011-12) Guo, Changcun; Pirozzi, Christopher J; Lopez, Giselle Y; Yan, HaiIsocitrate dehydrogenases, IDH1 and IDH2, decarboxylate isocitrate to α-ketoglutarate (α-KG) and reduce NADP to NADPH. Point mutations of IDH1 and IDH2 have been discovered in gliomas. IDH mutations cause loss of native enzymatic activities and confer novel activity of converting α-KG to 2-hydroxyglutarate (2-HG). The mechanisms of IDH mutations in gliomagenesis, and their value as diagnostic, prognostic marker and therapeutic target have been extensively studied. This review is to summarize the findings of these studies.Crystal structural studies revealed conformation changes in mutant IDHs, which may explain the gain of function by mutant IDHs. The product of mutant IDHs, 2-HG, is an inhibitor of α-KG-dependent dioxygenases, which may cause genome-wide epigenetic changes in human gliomas. IDH mutations are a favorable prognostic factor for human glioma and can be used as biomarker for differential diagnosis and subclassification rather than predictor of response to treatment. Preliminary data suggested that inhibiting production of the substrate of mutant IDH enzymes caused slow-down of glioma cell growth.As valuable diagnostic and prognostic markers of human gliomas, there is still a lack of knowledge on biological functions of mutant IDHs, making targeting IDHs in glioma both difficult and unsecured.Item Open Access Long range dynamic effects of point-mutations trap a response regulator in an active conformation.(FEBS letters, 2010-10) Bobay, Benjamin G; Thompson, Richele J; Hoch, James A; Cavanagh, JohnWhen a point-mutation in a protein elicits a functional change, it is most common to assign this change to local structural perturbations. Here we show that point-mutations, distant from an essential highly dynamic kinase recognition loop in the response regulator Spo0F, lock this loop in an active conformation. This 'conformational trapping' results in functionally hyperactive Spo0F. Consequently, point-mutations are seen to affect functionally critical motions both close to and far from the mutational site.Item Open Access Mechanism of local and global Ca2+ sensing by calmodulin in complex with a Ca2+ channel.(Cell, 2008-06-27) Tadross, Michael R; Dick, Ivy E; Yue, David TCalmodulin (CaM) in complex with Ca(2+) channels constitutes a prototype for Ca(2+) sensors that are intimately colocalized with Ca(2+) sources. The C-lobe of CaM senses local, large Ca(2+) oscillations due to Ca(2+) influx from the host channel, and the N-lobe senses global, albeit diminutive Ca(2+) changes arising from distant sources. Though biologically essential, the mechanism underlying global Ca(2+) sensing has remained unknown. Here, we advance a theory of how global selectivity arises, and we experimentally validate this proposal with methodologies enabling millisecond control of Ca(2+) oscillations seen by the CaM/channel complex. We find that global selectivity arises from rapid Ca(2+) release from CaM combined with greater affinity of the channel for Ca(2+)-free versus Ca(2+)-bound CaM. The emergence of complex decoding properties from the juxtaposition of common elements, and the techniques developed herein, promise generalization to numerous molecules residing near Ca(2+) sources.Item Open Access Molecular endpoints of Ca2+/calmodulin- and voltage-dependent inactivation of Ca(v)1.3 channels.(J Gen Physiol, 2010-03) Tadross, Michael R; Ben Johny, Manu; Yue, David TCa(2+)/calmodulin- and voltage-dependent inactivation (CDI and VDI) comprise vital prototypes of Ca(2+) channel modulation, rich with biological consequences. Although the events initiating CDI and VDI are known, their downstream mechanisms have eluded consensus. Competing proposals include hinged-lid occlusion of channels, selectivity filter collapse, and allosteric inhibition of the activation gate. Here, novel theory predicts that perturbations of channel activation should alter inactivation in distinctive ways, depending on which hypothesis holds true. Thus, we systematically mutate the activation gate, formed by all S6 segments within Ca(V)1.3. These channels feature robust baseline CDI, and the resulting mutant library exhibits significant diversity of activation, CDI, and VDI. For CDI, a clear and previously unreported pattern emerges: activation-enhancing mutations proportionately weaken inactivation. This outcome substantiates an allosteric CDI mechanism. For VDI, the data implicate a "hinged lid-shield" mechanism, similar to a hinged-lid process, with a previously unrecognized feature. Namely, we detect a "shield" in Ca(V)1.3 channels that is specialized to repel lid closure. These findings reveal long-sought downstream mechanisms of inactivation and may furnish a framework for the understanding of Ca(2+) channelopathies involving S6 mutations.Item Open Access Myocardial expression of a constitutively active alpha 1B-adrenergic receptor in transgenic mice induces cardiac hypertrophy.(Proc Natl Acad Sci U S A, 1994-10-11) Milano, CA; Dolber, PC; Rockman, HA; Bond, RA; Venable, ME; Allen, LF; Lefkowitz, RJTransgenic mice were generated by using the alpha-myosin heavy chain promoter coupled to the coding sequence of a constitutively active mutant alpha 1B-adrenergic receptor (AR). These transgenic animals demonstrated cardiac-specific expression of this alpha 1-AR with resultant activation of phospholipase C as shown by increased myocardial diacylglycerol content. A phenotype consistent with cardiac hypertrophy developed in adult transgenic mice with increased heart/body weight ratios, myocyte cross-sectional areas, and ventricular atrial natriuretic factor mRNA levels relative to nontransgenic controls. These transgenic animals may provide insight into the biochemical triggers that induce hypertrophy in cardiac disease and serve as a convenient experimental model for studies of this condition.Item Open Access Platelet-derived growth factor receptor association with Na(+)/H(+) exchanger regulatory factor potentiates receptor activity.(Mol Cell Biol, 2000-11) Maudsley, S; Zamah, AM; Rahman, N; Blitzer, JT; Luttrell, LM; Lefkowitz, RJ; Hall, RAPlatelet-derived growth factor (PDGF) is a potent mitogen for many cell types. The PDGF receptor (PDGFR) is a receptor tyrosine kinase that mediates the mitogenic effects of PDGF by binding to and/or phosphorylating a variety of intracellular signaling proteins upon PDGF-induced receptor dimerization. We show here that the Na(+)/H(+) exchanger regulatory factor (NHERF; also known as EBP50), a protein not previously known to interact with the PDGFR, binds to the PDGFR carboxyl terminus (PDGFR-CT) with high affinity via a PDZ (PSD-95/Dlg/Z0-1 homology) domain-mediated interaction and potentiates PDGFR autophosphorylation and extracellular signal-regulated kinase (ERK) activation in cells. A point-mutated version of the PDGFR, with the terminal leucine changed to alanine (L1106A), cannot bind NHERF in vitro and is markedly impaired relative to the wild-type receptor with regard to PDGF-induced autophosphorylation and activation of ERK in cells. NHERF potentiation of PDGFR signaling depends on the capacity of NHERF to oligomerize. NHERF oligomerizes in vitro when bound with PDGFR-CT, and a truncated version of the first NHERF PDZ domain that can bind PDGFR-CT but which does not oligomerize reduces PDGFR tyrosine kinase activity when transiently overexpressed in cells. PDGFR activity in cells can also be regulated in a NHERF-dependent fashion by stimulation of the beta(2)-adrenergic receptor, a known cellular binding partner for NHERF. These findings reveal that NHERF can directly bind to the PDGFR and potentiate PDGFR activity, thus elucidating both a novel mechanism by which PDGFR activity can be regulated and a new cellular role for the PDZ domain-containing adapter protein NHERF.