Browsing by Subject "Polymorphism"
Results Per Page
Sort Options
Item Open Access A Molecular Phylogenetic Study of Historical Biogeography and the Evolution of Self-Incompatibility RNases in Indian Ocean Coffea (Rubiaceae)(2010) Nowak, Michael DennisA fundamental goal in the diverse field of evolutionary biology is reconstructing the historical processes that facilitated lineage diversification and the current geographic distribution of species diversity. Oceanic islands provide a view of evolutionary processes that may otherwise be obscured by the complex biogeographic histories of continental systems, and have thus provided evolutionary biology with some of its most lasting and significant theories. The Indian Ocean island of Madagascar is home to an extraordinarily diverse and endemic biota, and reconstructing the historical processes responsible for this diversity has consumed countless academic careers. While the flowering plant genus Coffea is but one lineage contributing to Madagascar's staggering floral diversity, it is representative of the common evolutionary theme of adaptive radiation and local endemism on the island. In this dissertation, I employ the genus Coffea as a model for understanding historical biogeographic processes in the Indian Ocean using methods of molecular phylogenetics and population genetics. In the molecular phylogenetic study of Coffea presented in chapter 2, I show that Madagascan Coffea diversity is likely the product of at least two independent colonization events from Africa, a result that contradicts current hypotheses for the single origin of this group.
Species of Coffea are known to exhibit self-incompatibly, which can have a dramatic affect on the geographic distribution of plant genetic diversity. In chapter 3, I identify the genetic mechanism of self-incompatibility in Coffea as homologous to the canonical eudicot S-RNase system. Baker's Rule suggests that self-incompatible lineages are very unlikely to colonize oceanic islands, and in chapter 4, I test this hypothesis by characterizing the strength of self-incompatibility and comparing S-RNase polymorphism in Coffea populations endemic to isolated Indian Ocean islands (Grande Comore and Mauritius) with that of Madagascan/African species. My findings suggest that while island populations show little evidence for genetic bottleneck in S-RNase allelic diversity, Mauritian endemic Coffea may have evolved a type of "leaky" self-incompatibility allowing self-fertilization at some unknown rate. Through the application of traditional phylogenetic methods and novel data from the self-incompatibly locus, my dissertation contributes a wealth of new information regarding the evolutionary and biogeographic history of Coffea in the Indian Ocean.
Item Open Access Evolutionary Trends in the Individuation and Polymorphism of Colonial Marine Invertebrates(2007-05-10T16:02:15Z) Venit, Edward PeterAll life is organized hierarchically. Lower levels, such as cells and zooids, are nested within higher levels, such as multicellular organisms and colonial animals. The process by which a higher-level unit forms from the coalescence of lower-level units is known as “individuation”. Individuation is defined by the strength of functional interdependencies among constituent lower-level units. Interdependency results from division of labor, which is evidenced in colonial metazoans as zooid polymorphism. As lower-level units specialize for certain tasks, they become increasing dependant on the rest of the collective to perform other tasks. In this way, the evolution of division of labor drives the process of individuation. This study explores several ways in which polymorphism evolves in colonial marine invertebrates such as cnidarians, bryozoans, and urochordates. A previous study on the effect of environmental stability on polymorphism is revisted and reinterpreted. A method for quantifying colonial-level individuation by measuring the spatial arrangement of polymorphic zooids is proposed and demonstrated. Most significantly, a comparison across all colonial marine invertebrate taxa reveals that polymorphism only appears in those colonial taxa with moderately to strongly compartmentalized zooids. Weakly compartmentalized and fully compartmentalized taxa are universally monomorphic. This pattern is seen across all colonial marine invertebrate taxa and is interpreted as a “rule” governing the evolution of higher-level individuation in the major taxa of colonial marine invertebrates. The existence of one rule suggests that there may be others, including rules that transcend levels of biological hierarchy. The identification of such rules would strongly suggest that new levels in the hierarchy of life evolve by a universal pattern that is independent of the type of organism involved.Item Open Access Polymorphic variants of Fc receptors and antibodies derived from humans and rhesus macaques exhibit differential binding(2017-05-12) Penny, CaitlinImmune effector functions often depend on the fragment crystallizable (Fc) region of antibodies binding with Fc receptors (FcRs) on immune cells to trigger various responses. Polymorphisms in both Fc and FcR genes in humans and rhesus macaques have been demonstrated to alter the strength of this binding and consequently the immune response that is elicited. Rhesus macaques are often studied as an animal model for AIDS-like diseases, although he diversity of their FcRs has not yet been well characterized. Rhesus have more variation in their FcR genes, but less variation among IgG subclasses compared to humans. I hypothesize that the strength of signaling and subsequent immune responses caused by FcR-bearing cells will be regulated by the strength of Fc binding and the expression levels of FcRs on effector cells. To test this hypothesis, a more accurate genome map of human and rhesus macaques must be compiled, and methods developed to characterize interactions between polymorphic variants of FcRs and antibodies. I devised an ELISA protocol to test the hypothesis that known human and rhesus macaque FcR polymorphisms have differing binding affinities to antibody variants. My results suggest that ELISA assays can measure the strength of binding between variants of FcRs and antibodies to characterize interactions between these molecules. Future work should use similar ELISA techniques as well as immune complexes suspended in solution to distinguish the differing responses among a wider variety of both human and macaque polymorphisms within both FcR and antibody genes.Item Open Access Polymorphisms in the kinesin-like factor 1 B gene and risk of epithelial ovarian cancer in Eastern Chinese women.(Tumour Biol, 2015-09) Shi, Ting-Yan; Jiang, Zhi; Jiang, Rong; Yin, Sheng; Wang, Meng-Yun; Yu, Ke-Da; Shao, Zhi-Ming; Sun, Meng-Hong; Zang, Rongyu; Wei, QingyiThe kinesin-like factor 1 B (KIF1B) gene plays an important role in the process of apoptosis and the transformation and progression of malignant cells. Genetic variations in KIF1B may contribute to risk of epithelial ovarian cancer (EOC). In this study of 1,324 EOC patients and 1,386 cancer-free female controls, we investigated associations between two potentially functional single nucleotide polymorphisms in KIF1B and EOC risk by the conditional logistic regression analysis. General linear regression model was used to evaluate the correlation between the number of variant alleles and KIF1B mRNA expression levels. We found that the rs17401966 variant AG/GG genotypes were significantly associated with a decreased risk of EOC (adjusted odds ratio (OR) = 0.81, 95 % confidence interval (CI) = 0.68-0.97), compared with the AA genotype, but no associations were observed for rs1002076. Women who carried both rs17401966 AG/GG and rs1002076 AG/AA genotypes of KIF1B had a 0.82-fold decreased risk (adjusted 95 % CI = 0.69-0.97), compared with others. Additionally, there was no evidence of possible interactions between about-mentioned co-variants. Further genotype-phenotype correlation analysis indicated that the number of rs17401966 variant G allele was significantly associated with KIF1B mRNA expression levels (P for GLM = 0.003 and 0.001 in all and Chinese subjects, respectively), with GG carriers having the lowest level of KIF1B mRNA expression. Taken together, the rs17401966 polymorphism likely regulates KIF1B mRNA expression and thus may be associated with EOC risk in Eastern Chinese women. Larger, independent studies are warranted to validate our findings.