Browsing by Subject "Progesterone"
Results Per Page
Sort Options
Item Open Access A membrane-associated progesterone-binding protein, 25-Dx, is regulated by progesterone in brain regions involved in female reproductive behaviors.(Proc Natl Acad Sci U S A, 2000-11-07) Krebs, CJ; Jarvis, ED; Chan, J; Lydon, JP; Ogawa, S; Pfaff, DWThe ventromedial hypothalamus (VMH) plays a central role in the regulation of the female reproductive behavior lordosis, a behavior dependent upon the sequential activation of receptors for the ovarian steroid hormones estradiol (E) and progesterone (P). These receptors function as transcription factors to alter the expression of target genes. To discover behaviorally relevant genes targeted by E and P in the VMH, we used the differential display PCR to identify messenger RNAs that are differentially expressed in the hypothalamus of ovariectomized (ovx) rats treated with E alone compared with ovariectomized rats treated with E and P. We show here that one interesting mRNA within the hypothalamus that is repressed by P after E priming encodes the protein 25-Dx, the rat homolog of the human membrane-associated P-binding protein Hpr6.6. Neurons in the brain containing the highest levels of 25-Dx are located in several nuclei of the basal forebrain, including the VMH. 25-Dx expression is also higher in the hypothalamus of female P receptor "knockout" mice than in their wild-type littermates. These findings suggest a mechanism in which the activation of nuclear P receptor represses expression of a membrane P receptor, 25-Dx, during lordosis facilitation.Item Open Access Anti-inflammatory effects of progesterone in lipopolysaccharide-stimulated BV-2 microglia.(PLoS One, 2014) Lei, Beilei; Mace, Brian; Dawson, Hana N; Warner, David S; Laskowitz, Daniel T; James, Michael LFemale sex is associated with improved outcome in experimental brain injury models, such as traumatic brain injury, ischemic stroke, and intracerebral hemorrhage. This implies female gonadal steroids may be neuroprotective. A mechanism for this may involve modulation of post-injury neuroinflammation. As the resident immunomodulatory cells in central nervous system, microglia are activated during acute brain injury and produce inflammatory mediators which contribute to secondary injury including proinflammatory cytokines, and nitric oxide (NO) and prostaglandin E2 (PGE2), mediated by inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2), respectively. We hypothesized that female gonadal steroids reduce microglia mediated neuroinflammation. In this study, the progesterone's effects on tumor necrosis factor alpha (TNF-α), iNOS, and COX-2 expression were investigated in lipopolysaccharide (LPS)-stimulated BV-2 microglia. Further, investigation included nuclear factor kappa B (NF-κB) and mitogen activated protein kinase (MAPK) pathways. LPS (30 ng/ml) upregulated TNF-α, iNOS, and COX-2 protein expression in BV-2 cells. Progesterone pretreatment attenuated LPS-stimulated TNF-α, iNOS, and COX-2 expression in a dose-dependent fashion. Progesterone suppressed LPS-induced NF-κB activation by decreasing inhibitory κBα and NF-κB p65 phosphorylation and p65 nuclear translocation. Progesterone decreased LPS-mediated phosphorylation of p38, c-Jun N-terminal kinase and extracellular regulated kinase MAPKs. These progesterone effects were inhibited by its antagonist mifepristone. In conclusion, progesterone exhibits pleiotropic anti-inflammatory effects in LPS-stimulated BV-2 microglia by down-regulating proinflammatory mediators corresponding to suppression of NF-κB and MAPK activation. This suggests progesterone may be used as a potential neurotherapeutic to treat inflammatory components of acute brain injury.Item Embargo Breast cancer cells exhibit a non-linear proliferative dose response to progestins(2023) Dolan, EmmaThe steroid hormone progesterone has complex physiologic effects. In typical development and function, cells respond to progesterone in a dose- and tissue-specific manner. Despite the wide range of physiologic concentrations, canonical effects of progesterone have been characterized in the context of a high physiologic dose (10nM+), relevant during uterine cycling. This narrow focus has produced a gap in knowledge, particularly as it relates to the effects of post-menopausal low concentration progestins (0.1-0.3nM). Given that healthy tissues possess regulatory mechanisms to sense and respond to progesterone in a non-linear dose-specific manner, we hypothesized that breast malignancies would also display discontinuous dose-specific dynamic responses. Our results show that treatment with low dose progestins (0.1-0.3nM) drives proliferation in T47D human breast cancer cells, while high dose progestins (10nM+) inhibit proliferation. Using both unbiased and targeted approaches, we found that low dose progestins facilitate cell cycle entry by enhanced expression of CCND1 (cyclin D1) and SGK1 (serum and glucocorticoid related kinase 1), which are required for initiation of the downstream molecular cascade including phosphorylation of retinoblastoma protein (Rb) and expression E2F1. Expression of CCND1 and SGK1 mRNA are proximal responses to low dose progestin treatment, but transcriptional activation is not mediated by canonical progesterone receptor (PR) activity. Future work is needed to identify previously unexplored mechanisms of PR action in the context of low dose progestin treatments. In summary, these results challenge the assumption of dose response linearity to progestins and show unique functional and molecular effects of low dose progestin treatment. Of potential concern, our findings suggest that certain breast cancers, especially those expressing high levels of PR, may be accelerated by normal post-menopausal circulating concentrations of progestins (0.1-0.3nM). However, these findings also offer a sound rationale for the clinical therapeutic use of high dose progestins for patients with PR+ breast cancer.
Item Open Access Effects of acute estradiol and progesterone on perimenstrual exacerbation of suicidal ideation and related symptoms: a crossover randomized controlled trial.(Translational psychiatry, 2022-12) Eisenlohr-Moul, Tory A; Bowers, Savannah M; Prinstein, Mitchell J; Schmalenberger, Katja M; Walsh, Erin C; Young, Steven L; Rubinow, David R; Girdler, Susan SFemale suicide attempts peak peri-menstrually-around the onset of menses-when the ovarian steroids estradiol (E2) and progesterone (P4) fall rapidly. Given preclinical evidence that withdrawal from either E2 or P4 can provoke behaviors consistent with elevated suicide risk, we hypothesized that withdrawal from one or both of these steroids contributes to perimenstrual exacerbation of suicidal ideation (SI) and related symptoms. In a randomized, controlled, double-blind crossover experiment (NCT03720847), a transdiagnostic sample of naturally cycling, medically healthy psychiatric outpatients reporting past-month SI completed two conditions during two different 14-day experimental intervals (days 7-20 where the luteinizing hormone surge = day 0), separated by a monthlong washout cycle. In the E2 and P4 (EP) condition, participants received transdermal E2 (0.1 mg/day) plus oral micronized P4 (200 mg/day as 100 mg twice daily) to buffer perimenstrual steroid withdrawal. A matched placebo (PBO) condition allowed natural perimenstrual steroid withdrawal. Participants reported daily SI and planning (primary outcomes) and indices of depression (low mood, hopelessness), threat sensitivity (anxiety, perceived stress), executive functioning (difficulty concentrating, impulsivity), and social cognitive bias (rejection sensitivity, perceived burdensomeness). In baseline cycles, no participant met prospective criteria for DSM-5 premenstrual dysphoric disorder, but 59% met all criteria except full follicular symptom remission, and 93% showed the highest SI in the perimenstrual phase. Of 29 randomized, 28 were analyzed (14 EP-PBO, 14 PBO-EP). Experimental administration of E2 and P4 (relative to PBO) reduced perimenstrual exacerbation of SI, suicide planning, depression, hopelessness, perceived stress, rejection sensitivity, and perceived burdensomeness, particularly in the perimenstrual (natural E2 and P4 withdrawal) days. Further, delayed withdrawal from experimental E2 and P4 (but not PBO) recapitulated SI, hopelessness, and rejection sensitivity. Acute perimenstrual withdrawal from ovarian steroids may play a causal role in perimenstrual worsening of depression and SI.Item Open Access Loss of MIG-6 results in endometrial progesterone resistance via ERBB2.(Nature communications, 2022-03) Yoo, Jung-Yoon; Kim, Tae Hoon; Shin, Jung-Ho; Marquardt, Ryan M; Müller, Ulrich; Fazleabas, Asgerally T; Young, Steven L; Lessey, Bruce A; Yoon, Ho-Geun; Jeong, Jae-WookFemale subfertility is highly associated with endometriosis. Endometrial progesterone resistance is suggested as a crucial element in the development of endometrial diseases. We report that MIG-6 is downregulated in the endometrium of infertile women with endometriosis and in a non-human primate model of endometriosis. We find ERBB2 overexpression in the endometrium of uterine-specific Mig-6 knockout mice (Pgrcre/+Mig-6f/f; Mig-6d/d). To investigate the effect of ERBB2 targeting on endometrial progesterone resistance, fertility, and endometriosis, we introduce Erbb2 ablation in Mig-6d/d mice (Mig-6d/dErbb2d/d mice). The additional knockout of Erbb2 rescues all phenotypes seen in Mig-6d/d mice. Transcriptomic analysis shows that genes differentially expressed in Mig-6d/d mice revert to their normal expression in Mig-6d/dErbb2d/d mice. Together, our results demonstrate that ERBB2 overexpression in endometrium with MIG-6 deficiency causes endometrial progesterone resistance and a nonreceptive endometrium in endometriosis-related infertility, and ERBB2 targeting reverses these effects.Item Open Access Mechanism of Cyclin D1 regulation by progestins in breast cancer(2014) Krishnan, ShwetaThe majority of breast tumors express the estrogen receptor (ER), and more than half of these cancers also express the progesterone receptor (PR). While the actions of ER on breast cancer pathogenesis are well understood, those of PR are still unclear. The Women's Health Initiative trial in 2002 brought into focus the alarming result that women receiving both estrogen and progestins as hormone replacement therapy are at greater risk for breast cancer than women receiving estrogen alone. Thus, there is considerable interest in defining the mechanisms that underlie the pharmacological actions of progestins in the normal and malignant breast.
Progestins facilitate cell cycle progression through multiple mechanisms, one of which is the induction of phosphorylation of the tumor suppressor retinoblastoma (Rb) protein. Stimulation by growth factors induces the transcription of Cyclin D1 which in turn activates the cyclin dependent kinases (CDKs). The Cyclin D1- Cdk4/6 complex phosphorylates the Rb protein, leading to the release of E2F1, which then binds and activates other target genes, leading to G1-S transition of the cell cycle. Given the reported action of PR to activate MAPK signaling, we initially thought that the progestin-induced Rb phosphorylation was mediated by this pathway. However, we turned to an alternate hypothesis based on our data using MEK inhibitors demonstrating that this was not the case.
Given the primacy of Cyclin D1 in cell cycle control, we then turned our attention to defining the mechanism by which Cyclin D1 expression is regulated by PR. Interestingly, it was determined that progestin mediated up- regulation of Cyclin D1 is rapid, peaking at 6hrs post hormone addition followed by a decrease in expression reaching a nadir at 18hrs. Unexpectedly, we found that contrary to what has been published before, the induction of Cyclin D1 mRNA expression was a primary transcriptional event and we have demonstrated the specific interaction of PR with PREs (progesterone response elements) located on this gene. We have further determined that the half-life of Cyclin D1 mRNA is decreased significantly by progestin addition explaining how the levels of this mRNA following the addition of hormone are quickly attenuated. Thus, when taken together, our data suggest that progestins exert both positive and negative effects on Cyclin D1 mRNA, the uncoupling of which is likely to impact the pathogenesis of breast cancer
The observation that PR reduces the Cyclin D1 mRNA stability led us to investigate the effects of PR on RNA binding proteins, especially those which are involved in RNA stability. We discovered that PR induces the expression of several RNA binding proteins. Although the work to determine the effects of these RNA binding proteins on CyclinD1 mRNA stability is still ongoing, we have discovered a role for one of the PR-induced RNA binding proteins tristetraprolin (TTP), in the suppression of the inflammation pathway in breast cancer. We found that while TTP was not required for the PR-mediated decrease in Cyclin D1 mRNA stability, overexpression of this tumor suppressive protein was able to inhibit IL-1β-mediated stimulation of inflammatory genes in our breast cancer model. Since it is established that the upregulation of the inflammatory pathway is oncogenic, we are currently exploring the intersection of PR and TTP-mediated signaling on the inflammation transcriptome in breast cancer.
Thus, collectively these data provide us with a better picture of the poorly understood actions of PR on breast cancer proliferation and tumorigenesis. We believe that further investigation of the studies developed in this thesis will lead to novel and better-targeted approaches to the use of PR as a therapeutic target in the clinic.
Item Open Access Progesterone Signaling in Endometrial Epithelial Organoids.(Cells, 2022-05) Hewitt, Sylvia C; Wu, San-Pin; Wang, Tianyuan; Young, Steven L; Spencer, Thomas E; DeMayo, Francesco JFor pregnancy to be established, uterine cells respond to the ovarian hormones, estrogen, and progesterone, via their nuclear receptors, the estrogen receptor (ESR1) and progesterone receptor (PGR). ESR1 and PGR regulate genes by binding chromatin at genes and at distal enhancer regions, which interact via dynamic 3-dimensional chromatin structures. Endometrial epithelial cells are the initial site of embryo attachment and invasion, and thus understanding the processes that yield their receptive state is important. Here, we cultured and treated organoids derived from human epithelial cells, isolated from endometrial biopsies, with estrogen and progesterone and evaluated their transcriptional profiles, their PGR cistrome, and their chromatin conformation. Progesterone attenuated estrogen-dependent gene responses but otherwise minimally impacted the organoid transcriptome. PGR ChIPseq peaks were co-localized with previously described organoid ESR1 peaks, and most PGR and ESR1 peaks were in B (inactive) compartment regions of chromatin. Significantly more ESR1 peaks were assigned to estrogen-regulated genes by considering chromatin loops identified using HiC than were identified using ESR1 peak location relative to closest genes. Overall, the organoids model allowed a definition of the chromatin regulatory components governing hormone responsiveness.Item Open Access Sex-Specific Effects of Progesterone on Early Outcome of Intracerebral Hemorrhage.(Neuroendocrinology, 2016-01) Hsieh, Justin T; Lei, Beilei; Sheng, Huaxin; Venkatraman, Talagnair; Lascola, Christopher D; Warner, David S; James, Michael LBackground
Preclinical evidence suggests that progesterone improves recovery after intracerebral hemorrhage (ICH); however, gonadal hormones have sex-specific effects. Therefore, an experimental model of ICH was used to assess recovery after progesterone administration in male and female rats.Methods
ICH was induced in male and female Wistar rats via stereotactic intrastriatal injection of clostridial collagenase (0.5 U). Animals were randomized to receive vehicle or 8 mg/kg progesterone intraperitoneally at 2 h, then subcutaneously at 5, 24, 48, and 72 h after injury. Outcomes included relevant physiology during the first 3 h, hemorrhage and edema evolution over the first 24 h, proinflammatory transcription factor and cytokine regulation at 24 h, rotarod latency and neuroseverity score over the first 7 days, and microglial activation/macrophage recruitment at 7 days after injury.Results
Rotarod latency (p = 0.001) and neuroseverity score (p = 0.01) were improved in progesterone-treated males, but worsened in progesterone-treated females (p = 0.028 and p = 0.008, respectively). Progesterone decreased cerebral edema (p = 0.04), microglial activation/macrophage recruitment (p < 0.001), and proinflammatory transcription factor phosphorylated nuclear factor-x03BA;B p65 expression (p = 0.0038) in males but not females, independent of tumor necrosis factor-α, interleukin-6, and toll-like receptor-4 expression. Cerebral perfusion was increased in progesterone-treated males at 4 h (p = 0.043) but not 24 h after injury. Hemorrhage volume, arterial blood gases, glucose, and systolic blood pressure were not affected.Conclusions
Progesterone administration improved early neurobehavioral recovery and decreased secondary neuroinflammation after ICH in male rats. Paradoxically, progesterone worsened neurobehavioral recovery and did not modify neuroinflammation in female rats. Future work should isolate mechanisms of sex-specific progesterone effects after ICH.Item Open Access The 70-kDa heat shock cognate protein (Hsc73) gene is enhanced by ovarian hormones in the ventromedial hypothalamus.(Proc Natl Acad Sci U S A, 1999-02-16) Krebs, CJ; Jarvis, ED; Pfaff, DWEstrogen (E) and progesterone (P) orchestrate many cellular responses involved in female reproductive physiology, including reproductive behaviors. E- and P-binding neurons important for lordosis behavior have been located within the ventromedial hypothalamus (VMH), and several hormone-responsive genes have been observed there as well. In attempts to identify additional E- and P-responsive genes in the VMH that may contribute to sexual behaviors, we used the differential display mRNA screening technique. One of the genes identified encodes the 73-kDa heat shock cognate protein (Hsc73). Quantitative in situ hybridization analysis of brains from naturally cycling female rats revealed a significant increase in Hsc73 mRNA in the VMH and arcuate nucleus of animals during proestrus compared with those at diestrus-1. To confirm that these increases were steroid hormone dependent, we compared vehicle-treated ovariectomized females with ovariectomized females treated with estradiol benzoate and P. Northern analysis and in situ hybridizations showed that the Hsc73 gene is enhanced by E and P in the pituitary and subregions of the VMH. Incidentally, by examining the primary amino acid sequence of rat, human, and chicken progesterone receptors, we noticed that putative Hsc73 binding sites are conserved across species with similar sites existing in the androgen and glucocorticoid receptors. Together these findings suggest a possible mechanism through which E could influence the activities of progesterone, androgen, and glucocorticoid receptors, by enhancing the expression of Hsc73 in cells where these proteins colocalize.