Browsing by Subject "Protein Phosphatase 2"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access A SMAP in the face for cancer.(The Journal of clinical investigation, 2017-06) Shenolikar, ShirishObserved deficits in protein phosphatase 2A (PP2A) function in a variety of human cancers have stimulated drug discovery efforts aimed at restoring PP2A function to inhibit tumor growth. Work published by Sangodkar et al. in this issue of the JCI describes the characterization of orally available small molecule activators of PP2A (SMAPs). These SMAPs attenuated mitogenic signaling and triggered apoptosis in KRAS-mutant lung cancer cells and inhibited tumor growth in murine models. Tumors with mutations in the SMAP-binding site of the PP2A A subunit displayed resistance to SMAPs. Future studies that identify the PP2A-regulated events targeted by SMAPs should guide critical decisions about which cancers might be best treated with these molecules. This study provides encouraging evidence in favor of SMAPs as potential anticancer drugs.Item Open Access Afatinib induces apoptosis in NSCLC without EGFR mutation through Elk-1-mediated suppression of CIP2A.(Oncotarget, 2015-02) Chao, Ting-Ting; Wang, Cheng-Yi; Chen, Yen-Lin; Lai, Chih-Cheng; Chang, Fang-Yu; Tsai, Yi-Ting; Chao, Chung-Hao H; Shiau, Chung-Wai; Huang, Yuh-Chin T; Yu, Chong-Jen; Chen, Kuen-FengAfatinib has anti-tumor effect in non-small cell lung carcinoma (NSCLC) with epidermal growth factor receptor (EGFR) mutation. We found afatinib can also induce apoptosis in NSCLC cells without EGFR mutation through CIP2A pathway. Four NSCLC cell lines (H358 H441 H460 and A549) were treated with afatinib to determine their sensitivity to afatinib-induced cell death and apoptosis. The effects of CIP2A on afatinib-induced apoptosis were confirmed by overexpression and knockdown of CIP2A expression in the sensitive and resistant cells, respectively. Reduction of Elk-1 binding to the CIP2A promoter and suppression of CIP2A transcription were analyzed. In vivo efficacy of afatinib against H358 and H460 xenografts tumors were also determined in nude mice. Afatinib induced significant cell death and apoptosis in H358 and H441 cells, but not in H460 or A549 cells. The apoptotic effect of afatinib in sensitive cells was associated with downregulation of CIP2A, promotion of PP2A activity and decrease in AKT phosphorylation. Afatinib suppressed CIP2A at the gene transcription level by reducing the promoter binding activity of Elk-1. Clinical samples showed that higher CIP2A expression predicted a poor prognosis and Elk-1 and CIP2A expressions were highly correlated. In conclusion, afatinib induces apoptosis in NSCLC without EGFR mutations through Elk-1/CIP2A/PP2A/AKT pathway.Item Open Access Inhibition of Pten deficient Castration Resistant Prostate Cancer by Targeting of the SET - PP2A Signaling axis.(Sci Rep, 2015-11-13) Hu, Xiaoyong; Garcia, Consuelo; Fazli, Ladan; Gleave, Martin; Vitek, Michael P; Jansen, Marilyn; Christensen, Dale; Mulholland, David JThe PP2A signaling axis regulates multiple oncogenic drivers of castration resistant prostate cancer (CRPC). We show that targeting the endogenous PP2A regulator, SET (I2PP2A), is a viable strategy to inhibit prostate cancers that are resistant to androgen deprivation therapy. Our data is corroborated by analysis of prostate cancer patient cohorts showing significant elevation of SET transcripts. Tissue microarray analysis reveals that elevated SET expression correlates with clinical cancer grading, duration of neoadjuvant hormone therapy (NHT) and time to biochemical recurrence. Using prostate regeneration assays, we show that in vivo SET overexpression is sufficient to induce hyperplasia and prostatic intraepithelial neoplasia. Knockdown of SET induced significant reductions in tumorgenesis both in murine and human xenograft models. To further validate SET as a therapeutic target, we conducted in vitro and in vivo treatments using OP449 - a recently characterized PP2A-activating drug (PAD). OP449 elicits robust anti-cancer effects inhibiting growth in a panel of enzalutamide resistant prostate cancer cell lines. Using the Pten conditional deletion mouse model of prostate cancer, OP449 potently inhibited PI3K-Akt signaling and impeded CRPC progression. Collectively, our data supports a critical role for the SET-PP2A signaling axis in CRPC progression and hormone resistant disease.