Browsing by Subject "Prothrombin"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Effects of an antisense oligonucleotide inhibitor of C-reactive protein synthesis on the endotoxin challenge response in healthy human male volunteers.(J Am Heart Assoc, 2014-07-10) Noveck, Robert; Stroes, Erik SG; Flaim, JoAnn D; Baker, Brenda F; Hughes, Steve; Graham, Mark J; Crooke, Rosanne M; Ridker, Paul MBACKGROUND: C-reactive protein (CRP) binds to damaged cells, activates the classical complement pathway, is elevated in multiple inflammatory conditions, and provides prognostic information on risk of future atherosclerotic events. It is controversial, however, as to whether inhibiting CRP synthesis would have any direct anti-inflammatory effects in humans. METHODS AND RESULTS: A placebo-controlled study was used to evaluate the effects of ISIS 329993 (ISIS-CRPR x) on the acute-phase response after endotoxin challenge in 30 evaluable subjects. Healthy adult males were randomly allocated to receive 6 injections over a 22-day period of placebo or active therapy with ISIS 329993 at 400- or 600-mg doses. Eligible subjects were subsequently challenged with a bolus of endotoxin (2 ng/kg). Inflammatory and hematological biomarkers were measured before and serially after the challenge. ISIS-CRPR x was well tolerated with no serious adverse events. Median CRP levels increased more than 50-fold from baseline 24 hours after endotoxin challenge in the placebo group. In contrast, the median increase in CRP levels was attenuated by 37% (400 mg) and 69% (600 mg) in subjects pretreated with ISIS-CRPR x (P<0.05 vs. placebo). All other aspects of the acute inflammatory response were similar between treatment groups. CONCLUSION: Pretreatment of subjects with ISIS-CRPR x selectively reduced the endotoxin-induced increase in CRP levels in a dose-dependent manner, without affecting other components of the acute-phase response. These data demonstrate the specificity of antisense oligonucleotides and provide an investigative tool to further define the role of CRP in human pathological conditions.Item Open Access Modelling the linkage between influenza infection and cardiovascular events via thrombosis.(Scientific reports, 2020-08-31) McCarthy, Zachary; Xu, Shixin; Rahman, Ashrafur; Bragazzi, Nicola Luigi; Corrales-Medina, Vicente F; Lee, Jason; Seet, Bruce T; Neame, Dion; Thommes, Edward; Heffernan, Jane; Chit, Ayman; Wu, JianhongThere is a heavy burden associated with influenza including all-cause hospitalization as well as severe cardiovascular and cardiorespiratory events. Influenza associated cardiac events have been linked to multiple biological pathways in a human host. To study the contribution of influenza virus infection to cardiovascular thrombotic events, we develop a dynamic model which incorporates some key elements of the host immune response, inflammatory response, and blood coagulation. We formulate these biological systems and integrate them into a cohesive modelling framework to show how blood clotting may be connected to influenza virus infection. With blood clot formation inside an artery resulting from influenza virus infection as the primary outcome of this integrated model, we demonstrate how blood clot severity may depend on circulating prothrombin levels. We also utilize our model to leverage clinical data to inform the threshold level of the inflammatory cytokine TNFα which initiates tissue factor induction and subsequent blood clotting. Our model provides a tool to explore how individual biological components contribute to blood clotting events in the presence of influenza infection, to identify individuals at risk of clotting based on their circulating prothrombin levels, and to guide the development of future vaccines to optimally interact with the immune system.