Browsing by Subject "Proto-Oncogene Proteins"
Now showing 1 - 10 of 10
- Results Per Page
- Sort Options
Item Open Access ACLY and ACC1 Regulate Hypoxia-Induced Apoptosis by Modulating ETV4 via α-ketoglutarate.(PLoS Genet, 2015-10) Keenan, Melissa M; Liu, Beiyu; Tang, Xiaohu; Wu, Jianli; Cyr, Derek; Stevens, Robert D; Ilkayeva, Olga; Huang, Zhiqing; Tollini, Laura A; Murphy, Susan K; Lucas, Joseph; Muoio, Deborah M; Kim, So Young; Chi, Jen-TsanIn order to propagate a solid tumor, cancer cells must adapt to and survive under various tumor microenvironment (TME) stresses, such as hypoxia or lactic acidosis. To systematically identify genes that modulate cancer cell survival under stresses, we performed genome-wide shRNA screens under hypoxia or lactic acidosis. We discovered that genetic depletion of acetyl-CoA carboxylase (ACACA or ACC1) or ATP citrate lyase (ACLY) protected cancer cells from hypoxia-induced apoptosis. Additionally, the loss of ACLY or ACC1 reduced levels and activities of the oncogenic transcription factor ETV4. Silencing ETV4 also protected cells from hypoxia-induced apoptosis and led to remarkably similar transcriptional responses as with silenced ACLY or ACC1, including an anti-apoptotic program. Metabolomic analysis found that while α-ketoglutarate levels decrease under hypoxia in control cells, α-ketoglutarate is paradoxically increased under hypoxia when ACC1 or ACLY are depleted. Supplementation with α-ketoglutarate rescued the hypoxia-induced apoptosis and recapitulated the decreased expression and activity of ETV4, likely via an epigenetic mechanism. Therefore, ACC1 and ACLY regulate the levels of ETV4 under hypoxia via increased α-ketoglutarate. These results reveal that the ACC1/ACLY-α-ketoglutarate-ETV4 axis is a novel means by which metabolic states regulate transcriptional output for life vs. death decisions under hypoxia. Since many lipogenic inhibitors are under investigation as cancer therapeutics, our findings suggest that the use of these inhibitors will need to be carefully considered with respect to oncogenic drivers, tumor hypoxia, progression and dormancy. More broadly, our screen provides a framework for studying additional tumor cell stress-adaption mechanisms in the future.Item Restricted beta-arrestin-1 competitively inhibits insulin-induced ubiquitination and degradation of insulin receptor substrate 1.(Mol Cell Biol, 2004-10) Usui, Isao; Imamura, Takeshi; Huang, Jie; Satoh, Hiroaki; Shenoy, Sudha K; Lefkowitz, Robert J; Hupfeld, Christopher J; Olefsky, Jerrold Mbeta-arrestin-1 is an adaptor protein that mediates agonist-dependent internalization and desensitization of G-protein-coupled receptors (GPCRs) and also participates in the process of heterologous desensitization between receptor tyrosine kinases and GPCR signaling. In the present study, we determined whether beta-arrestin-1 is involved in insulin-induced insulin receptor substrate 1 (IRS-1) degradation. Overexpression of wild-type (WT) beta-arrestin-1 attenuated insulin-induced degradation of IRS-1, leading to increased insulin signaling downstream of IRS-1. When endogenous beta-arrestin-1 was knocked down by transfection of beta-arrestin-1 small interfering RNA, insulin-induced IRS-1 degradation was enhanced. Insulin stimulated the association of IRS-1 and Mdm2, an E3 ubiquitin ligase, and this association was inhibited to overexpression of WT beta-arrestin-1, which led by decreased ubiquitin content of IRS-1, suggesting that both beta-arrestin-1 and IRS-1 competitively bind to Mdm2. In summary, we have found the following: (i) beta-arrestin-1 can alter insulin signaling by inhibiting insulin-induced proteasomal degradation of IRS-1; (ii) beta-arrestin-1 decreases the rate of ubiquitination of IRS-1 by competitively binding to endogenous Mdm2, an E3 ligase that can ubiquitinate IRS-1; (iii) dephosphorylation of S412 on beta-arrestin and the amino terminus of beta-arrestin-1 are required for this effect of beta-arrestin on IRS-1 degradation; and (iv) inhibition of beta-arrestin-1 leads to enhanced IRS-1 degradation and accentuated cellular insulin resistance.Item Open Access Chromatin Remodeling of Colorectal Cancer Liver Metastasis is Mediated by an HGF-PU.1-DPP4 Axis.(Advanced science (Weinheim, Baden-Wurttemberg, Germany), 2021-10) Wang, Lihua; Wang, Ergang; Prado Balcazar, Jorge; Wu, Zhenzhen; Xiang, Kun; Wang, Yi; Huang, Qiang; Negrete, Marcos; Chen, Kai-Yuan; Li, Wei; Fu, Yujie; Dohlman, Anders; Mines, Robert; Zhang, Liwen; Kobayashi, Yoshihiko; Chen, Tianyi; Shi, Guizhi; Shen, John Paul; Kopetz, Scott; Tata, Purushothama Rao; Moreno, Victor; Gersbach, Charles; Crawford, Gregory; Hsu, David; Huang, Emina; Bu, Pengcheng; Shen, XilingColorectal cancer (CRC) metastasizes mainly to the liver, which accounts for the majority of CRC-related deaths. Here it is shown that metastatic cells undergo specific chromatin remodeling in the liver. Hepatic growth factor (HGF) induces phosphorylation of PU.1, a pioneer factor, which in turn binds and opens chromatin regions of downstream effector genes. PU.1 increases histone acetylation at the DPP4 locus. Precise epigenetic silencing by CRISPR/dCas9KRAB or CRISPR/dCas9HDAC revealed that individual PU.1-remodeled regulatory elements collectively modulate DPP4 expression and liver metastasis growth. Genetic silencing or pharmacological inhibition of each factor along this chromatin remodeling axis strongly suppressed liver metastasis. Therefore, microenvironment-induced epimutation is an important mechanism for metastatic tumor cells to grow in their new niche. This study presents a potential strategy to target chromatin remodeling in metastatic cancer and the promise of repurposing drugs to treat metastasis.Item Open Access CYLD inhibits melanoma growth and progression through suppression of the JNK/AP-1 and β1-integrin signaling pathways.(J Invest Dermatol, 2013-01) Ke, Hengning; Augustine, Christina K; Gandham, Vineela D; Jin, Jane Y; Tyler, Douglas S; Akiyama, Steven K; Hall, Russell P; Zhang, Jennifer YThe molecular mechanisms mediating cylindromatosis (CYLD) tumor suppressor function appear to be manifold. Here, we demonstrate that, in contrast to the increased levels of phosphorylated c-Jun NH(2)-terminal kinase (pJNK), CYLD was decreased in a majority of the melanoma cell lines and tissues examined. Exogenous expression of CYLD but not its catalytically deficient mutant markedly inhibited melanoma cell proliferation and migration in vitro and subcutaneous tumor growth in vivo. In addition, the melanoma cells expressing exogenous CYLD were unable to form pulmonary tumor nodules following tail-vein injection. At the molecular level, CYLD decreased β1-integrin and inhibited pJNK induction by tumor necrosis factor-α or cell attachment to collagen IV. Moreover, CYLD induced an array of other molecular changes associated with modulation of the "malignant" phenotype, including a decreased expression of cyclin D1, N-cadherin, and nuclear Bcl3, and an increased expression of p53 and E-cadherin. Most interestingly, coexpression of the constitutively active MKK7 or c-Jun mutants with CYLD prevented the above molecular changes, and fully restored melanoma growth and metastatic potential in vivo. Our findings demonstrate that the JNK/activator protein 1 signaling pathway underlies the melanoma growth and metastasis that are associated with CYLD loss of function. Thus, restoration of CYLD and inhibition of JNK and β1-integrin function represent potential therapeutic strategies for treatment of malignant melanoma.Item Open Access Dual modulation of cell survival and cell death by beta(2)-adrenergic signaling in adult mouse cardiac myocytes.(Proc Natl Acad Sci U S A, 2001-02-13) Zhu, WZ; Zheng, M; Koch, WJ; Lefkowitz, RJ; Kobilka, BK; Xiao, RPThe goal of this study was to determine whether beta(1)-adrenergic receptor (AR) and beta(2)-AR differ in regulating cardiomyocyte survival and apoptosis and, if so, to explore underlying mechanisms. One potential mechanism is that cardiac beta(2)-AR can activate both G(s) and G(i) proteins, whereas cardiac beta(1)-AR couples only to G(s). To avoid complicated crosstalk between beta-AR subtypes, we expressed beta(1)-AR or beta(2)-AR individually in adult beta(1)/beta(2)-AR double knockout mouse cardiac myocytes by using adenoviral gene transfer. Stimulation of beta(1)-AR, but not beta(2)-AR, markedly induced myocyte apoptosis, as indicated by increased terminal deoxynucleotidyltransferase-mediated UTP end labeling or Hoechst staining positive cells and DNA fragmentation. In contrast, beta(2)-AR (but not beta(1)-AR) stimulation elevated the activity of Akt, a powerful survival signal; this effect was fully abolished by inhibiting G(i), G(beta gamma), or phosphoinositide 3 kinase (PI3K) with pertussis toxin, beta ARK-ct (a peptide inhibitor of G(beta gamma)), or LY294002, respectively. This indicates that beta(2)-AR activates Akt via a G(i)-G(beta gamma)-PI3K pathway. More importantly, inhibition of the G(i)-G(beta gamma)-PI3K-Akt pathway converts beta(2)-AR signaling from survival to apoptotic. Thus, stimulation of a single class of receptors, beta(2)-ARs, elicits concurrent apoptotic and survival signals in cardiac myocytes. The survival effect appears to predominate and is mediated by the G(i)-G(beta gamma)-PI3K-Akt signaling pathway.Item Open Access LKB1 Loss induces characteristic patterns of gene expression in human tumors associated with NRF2 activation and attenuation of PI3K-AKT.(Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer, 2014-06) Kaufman, Jacob M; Amann, Joseph M; Park, Kyungho; Arasada, Rajeswara Rao; Li, Haotian; Shyr, Yu; Carbone, David PInactivation of serine/threonine kinase 11 (STK11 or LKB1) is common in lung cancer, and understanding the pathways and phenotypes altered as a consequence will aid the development of targeted therapeutic strategies. Gene and protein expressions in a murine model of v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (Kras)-mutant lung cancer have been studied to gain insight into the biology of these tumors. However, the molecular consequences of LKB1 loss in human lung cancer have not been fully characterized.We studied gene expression profiles associated with LKB1 loss in resected lung adenocarcinomas, non-small-cell lung cancer cell lines, and murine tumors. The biological significance of dysregulated genes was interpreted using gene set enrichment and transcription factor analyses and also by integration with somatic mutations and proteomic data.Loss of LKB1 is associated with consistent gene expression changes in resected human lung cancers and cell lines that differ substantially from the mouse model. Our analysis implicates novel biological features associated with LKB1 loss, including altered mitochondrial metabolism, activation of the nuclear respiratory factor 2 (NRF2) transcription factor by kelch-like ECH-associated protein 1 (KEAP1) mutations, and attenuation of the phosphatidylinositiol 3-kinase and v-akt murine thymoma viral oncogene homolog (PI3K/AKT) pathway. Furthermore, we derived a 16-gene classifier that accurately predicts LKB1 mutations and loss by nonmutational mechanisms. In vitro, transduction of LKB1 into LKB1-mutant cell lines results in attenuation of this signature.Loss of LKB1 defines a subset of lung adenocarcinomas associated with characteristic molecular phenotypes and distinctive gene expression features. Studying these effects may improve our understanding of the biology of these tumors and lead to the identification of targeted treatment strategies.Item Open Access MDM4 genetic variants and risk of gastric cancer in an Eastern Chinese population.(Oncotarget, 2017-03) Wang, Meng-Yun; Jia, Ming; He, Jing; Zhou, Fei; Qiu, Li-Xin; Sun, Meng-Hong; Yang, Ya-Jun; Wang, Jiu-Cun; Jin, Li; Wang, Ya-Nong; Wei, Qing-YiMDM4 is a p53-interacting protein and plays an important role in carcinogenesis. In this study of 1,077 gastric cancer (GCa) cases and 1,173 matched cancer-free controls, we investigated associations between three tagging single nucleotide polymorphisms (SNPs) (rs11801299 G>A, rs1380576 C>G and rs10900598 G>T) in MDM4 and gastric cancer risk in an Eastern Chinese Population. In logistic regression analysis, a significantly decreased GCa risk was associated with the rs1380576 GG variant genotype (adjusted odds ratio [OR] =0.74, 95% confidence interval [CI] =0.56-0.98) under a recessive model, which remained significant after correction by the false-positive reporting probability. This risk was more evident in subgroups of older subjects, males, never smokers, never drinkers and cancers of non-cardia. We then performed SNP-mRNA expression correlation analysis and found that the GG variant genotype was associated with significantly decreased expression of MDM4 mRNA in normal cell lines for 44 Chinese (P=0.032 for GG vs. CC) as well as for 269 multi-ethnic subjects (P<0.0001 for GG vs. CC). Our results suggest that the MDM4 rs1380576 G variant may be markers for GCa susceptibility. Larger, independent studies are warranted to validate our findings.Item Open Access Melanoma-Derived Wnt5a Promotes Local Dendritic-Cell Expression of IDO and Immunotolerance: Opportunities for Pharmacologic Enhancement of Immunotherapy.(Cancer Immunol Res, 2015-09) Holtzhausen, Alisha; Zhao, Fei; Evans, Kathy S; Tsutsui, Masahito; Orabona, Ciriana; Tyler, Douglas S; Hanks, Brent AThe β-catenin signaling pathway has been demonstrated to promote the development of a tolerogenic dendritic cell (DC) population capable of driving regulatory T-cell (Treg) differentiation. Further studies have implicated tolerogenic DCs in promoting carcinogenesis in preclinical models. The molecular mechanisms underlying the establishment of immune tolerance by this DC population are poorly understood, and the methods by which developing cancers can co-opt this pathway to subvert immune surveillance are currently unknown. This work demonstrates that melanoma-derived Wnt5a ligand upregulates the durable expression and activity of the indoleamine 2,3-dioxygenase-1 (IDO) enzyme by local DCs in a manner that depends upon the β-catenin signaling pathway. These data indicate that Wnt5a-conditioned DCs promote the differentiation of Tregs in an IDO-dependent manner, and that this process serves to suppress melanoma immune surveillance. We further show that the genetic silencing of the PORCN membrane-bound O-acyl transferase, which is necessary for melanoma Wnt ligand secretion, enhances antitumor T-cell immunity, and that the pharmacologic inhibition of this enzyme synergistically suppresses melanoma progression when combined with anti-CTLA-4 antibody therapy. Finally, our data suggest that β-catenin signaling activity, based on a target gene expression profile that includes IDO in human sentinel lymph node-derived DCs, is associated with melanoma disease burden and diminished progression-free survival. This work implicates the Wnt-β-catenin signaling pathway as a novel therapeutic target in the melanoma immune microenvironment and demonstrates the potential impact of manipulating DC function as a strategy for optimizing tumor immunotherapy.Item Open Access Mouse double minute 4 variants modify susceptibility to risk of recurrence in patients with squamous cell carcinoma of the oropharynx.(Molecular carcinogenesis, 2018-03) Lu, Zhongming; Lu, Zhongming; Sturgis, Erich M; Zhu, Lijun; Zhang, Hua; Tao, Ye; Wei, Peng; Wei, Qingyi; Li, GuojunGiven the crucial role of Mouse double minute 4 (MDM4) oncoprotein in p53 pathway, single nucleotide polymorphisms (SNPs) could serve as such biomarkers for prediction of SCCOP recurrence. Thus, we investigated associations between three tagging putatively functional variants of MDM4, two in the 3' untranslated region of 3' UTR [rs11801299 (NC_000001.10:g.204529084G>A) and rs10900598(NC_000001.10:g.204525568G>T)] and one in intron 1 [rs1380576(NC_000001.10:g.204488278G>C)], and recurrence risk of SCCOP in 1,008 incident patients. A log-rank test and multivariable Cox models were used to assess associations. Patients with MDM4-rs10900598 GT/TT had a worse disease-free survival (DFS) compared with corresponding GG genotype, while those with rs11801299 AG/AA genotypes had a lower recurrence risk than the cases with rs11801299 GG genotype (both log-rank, P < 0.001). Multivariable analysis showed that significantly different recurrence risk were found among patients with MDM4-rs10900598 GT/TT and rs11801299 AG/AA variant genotypes (HR, 2.0, 95% CI, 1.4-2.9 and HR, 0.4, 95% CI, 0.3-0.6, respectively) compared with their corresponding common homozygous genotypes. Furthermore, after combining the risk genotypes of the three SNPs, patients among low-risk group had a significantly lower risk of SCCOP recurrence than those in high-risk group (HR, 0.2, 95% CI, 0.1-0.3). The risk for both individual SNPs or combined risk genotypes was restricted to HPV-positive SCCOP patients. Our findings suggest that the MDM4 polymorphisms may, individually or in combination, confer an independent risk of SCCOP recurrence, particularly in HPV-positive SCCOP patients. However, larger studies are needed to validate our findings.Item Open Access Wee1-regulated apoptosis mediated by the crk adaptor protein in Xenopus egg extracts.(J Cell Biol, 2000-12-25) Smith, JJ; Evans, EK; Murakami, M; Moyer, MB; Moseley, MA; Vande Woude, G; Kornbluth, SMany of the biochemical reactions of apoptotic cell death, including mitochondrial cytochrome c release and caspase activation, can be reconstituted in cell-free extracts derived from Xenopus eggs. In addition, because caspase activation does not occur until the egg extract has been incubated for several hours on the bench, upstream signaling processes occurring before full apoptosis are rendered accessible to biochemical manipulation. We reported previously that the adaptor protein Crk is required for apoptotic signaling in egg extracts (Evans, E.K., W. Lu, S.L. Strum, B.J. Mayer, and S. Kornbluth. 1997. EMBO (Eur. Mol. Biol. Organ.) J. 16:230-241). Moreover, we demonstrated that removal of Crk Src homology (SH)2 or SH3 interactors from the extracts prevented apoptosis. We now report the finding that the relevant Crk SH2-interacting protein, important for apoptotic signaling in the extract, is the well-known cell cycle regulator, Wee1. We have demonstrated a specific interaction between tyrosine-phosphorylated Wee1 and the Crk SH2 domain and have shown that recombinant Wee1 can restore apoptosis to an extract depleted of SH2 interactors. Moreover, exogenous Wee1 accelerated apoptosis in egg extracts, and this acceleration was largely dependent on the presence of endogenous Crk protein. As other Cdk inhibitors, such as roscovitine and Myt1, did not act like Wee1 to accelerate apoptosis, we propose that Wee1-Crk complexes signal in a novel apoptotic pathway, which may be unrelated to Wee1's role as a cell cycle regulator.